zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A general class of coupled nonlinear differential equations arising in self-similar solutions of convective heat transfer problems. (English) Zbl 1211.34037
Existence and uniqueness results are obtained for a class of boundary value problems on semi-infinite intervals for coupled third-order nonlinear ordinary differential equations. The considered problems arise in connection with heat and mass transfer phenomena.
34B40Boundary value problems for ODE on infinite intervals
34B15Nonlinear boundary value problems for ODE
34B60Applications of theory of BVP for ODE
[1]Sakiadis, B. C.: Boundary layer behaviour on continuous moving solid surfaces, I, Am. inst. Chem. eng. J. 7, 26-28 (1961)
[2]Erickson, L. E.; Fan, L. T.; Fox, V. G.: Heat and mass transfer on a moving continuous flat plate with suction or injection, Ind. eng. Chem. fund. 5, 19-25 (1966)
[3]Crane, L. J.: Flow past a stretching plate, Z. angew. Math. phys. 21, 645-647 (1970)
[4]Danberg, J. E.; Fansler, K. S.: A nonsimilar moving-wall boundary-layer problem, Quart. appl. Math. 34, 305-309 (1976) · Zbl 0359.76039
[5]Gupta, P. S.; Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. eng. 55, 744-746 (1977)
[6]Chen, C. K.; Char, M.: Heat transfer of a continuous stretching surface with suction or blowing, J. math. Anal. appl. 135, 568-580 (1988) · Zbl 0652.76062 · doi:10.1016/0022-247X(88)90172-2
[7]Fox, V. G.; Erickson, L. E.; Fan, L. T.: The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid, Am. inst. Chem. eng. J. 15, 327-333 (1969)
[8]Rajagopal, K. R.; Na, T. Y.; Gupta, A. S.: Flow of a viscoelastic fluid over a stretching sheet, Rheol. acta 23, 213-215 (1984)
[9]Coleman, B. D.; Noll, W.: An approximation theorem for functionals with applications in continuum mechanics, Arch. rational mech. Anal. 6, 355-370 (1960) · Zbl 0097.16403 · doi:10.1007/BF00276168
[10]Troy, W. C.; Ii, E. A. Overman; Ermen-Trout, G. B.; Keener, J. P.: Uniqueness of flow of a second-order fluid past a stretching sheet, Quart. appl. Math. 44, 753-755 (1987) · Zbl 0613.76006
[11]Vajravelu, K.; Rollins, D.: Heat transfer in a viscoelastic fluid over a stretching sheet, J. math. Anal. appl. 158, 241-255 (1991) · Zbl 0725.76019 · doi:10.1016/0022-247X(91)90280-D
[12]Vajravelu, K.; Roper, T.: Flow and heat transfer in a second grade fluid over a stretching sheet, Int. J. Nonlinear mech. 34, 1031-1036 (1999) · Zbl 1006.76005 · doi:10.1016/S0020-7462(98)00073-0
[13]Afzal, N.; Varshney, I. S.: The cooling of low heat resistance stretching sheet moving through a fluid, Warme – und stoffubertragung 14, 289-293 (1980)
[14]Vajravelu, K.; Cannon, J. R.: Fluid flow over a nonlinear stretching sheet, Appl. math. Comput. 181, 609-618 (2006) · Zbl 1143.76024 · doi:10.1016/j.amc.2005.08.051
[15]Akyildiz, F. T.; Siginer, D. A.; Vajravelu, K.; Cannon, J. R.; Van Gorder, R. A.: Similarity solutions of the boundary layer equation for a nonlinearly stretching sheet, Math. methods appl. Sci. 33, 601-606 (2010) · Zbl 1201.34048 · doi:10.1002/mma.1181
[16]Molla, M. M.; Paul, S. C.; Hossain, M. A.: Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation, Appl. math. Model. 33, 3226-3236 (2009) · Zbl 1205.76246 · doi:10.1016/j.apm.2008.10.039
[17]Xu, H.; Liao, S. J.; Wu, G. X.: A family of new solutions on the wall jet, Eur. J. Mech. B/fluid 27, 322-334 (2008) · Zbl 1154.76335 · doi:10.1016/j.euromechflu.2007.07.002
[18]Liao, S. J.: A new branch of boundary layer flows over a permeable stretching plate, Int. J. Non-linear mech. 42, 819-830 (2007) · Zbl 1200.76046 · doi:10.1016/j.ijnonlinmec.2007.03.007
[19]Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat mass transfer 48, 2529-2539 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[20]Abbasbandy, S.; Magyari, E.; Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems, Commun. nonlinear sci. Numer. simul. 14, 3530-3536 (2009) · Zbl 1221.65170 · doi:10.1016/j.cnsns.2009.02.008
[21]Abbasbandy, S.; Hayat, T.: Solution of the MHD Falkner – Skan flow by Hankel – Padé method, Phys. lett. A 373, 731-734 (2009) · Zbl 1227.76068 · doi:10.1016/j.physleta.2008.12.045
[22]Vajravelu, K.; Rollins, D.: Hydromagnetic flow of a second grade fluid over a stretching sheet, Appl. math. Comput. 148, 783-791 (2004) · Zbl 1034.76061 · doi:10.1016/S0096-3003(02)00942-6
[23]R.A. Van Gorder, K. Vajravelu, Multiple solutions for hydromagnetic flow of a second grade fluid over a stretching or shrinking sheet, Quart. Appl. Math, in press.
[24]Van Gorder, R. A.: High-order nonlinear boundary value problems admitting multiple exact solutions with application to the fluid flow over a sheet, Appl. math. Comput. 216, 2177-2182 (2010)