zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison results for nonlinear degenerate Dirichlet and Neumann problems with general growth in the gradient. (English) Zbl 1211.35125
Summary: This paper deals with both Dirichlet and Neumann problems for a class of nonlinear degenerate elliptic equations with general growth in the gradient. First, we give an existence result of a spherically symmetric solution to the “symmetrized” problems with data depending only on the radials. Second, we prove that the solutions of the original problems can be compared, under a rearrangement, with the solutions of the “symmetrized” problems.
MSC:
35J70Degenerate elliptic equations
35J60Nonlinear elliptic equations
35J25Second order elliptic equations, boundary value problems
35B06Symmetries, invariants, etc. (PDE)
35B51Comparison principles (PDE)
References:
[1]Alvino, A.; Trombetti, G.; Lions, P. L.: Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. inst. H. Poincaré anal. Non linéaire 7, 37-65 (1990) · Zbl 0703.35007 · doi:numdam:AIHPC_1990__7_2_37_0
[2]Alvino, A.; Trombetti, G.: Sulle migliori constanti di maggiorazione per una classe di equazioni ellittiche degeneri, Ric. mat. 27, 413-428 (1978) · Zbl 0403.35027
[3]Alvino, A.; Trombetti, G.; Lions, P. L.: On optimization problems with prescribed rearrangements, Nonlinear anal. 13, No. 2, 185-220 (1989) · Zbl 0678.49003 · doi:10.1016/0362-546X(89)90043-6
[4]Bandle, C.: Isoperimetric inequalities and application, Monogr. stud. Math. 7 (1980) · Zbl 0436.35063
[5]Betta, M. F.: Neumann problems: comparison results, Rend. accad. Sci. fis. Mat. napoli 57, 41-58 (1990) · Zbl 1145.35322
[6]Boccardo, L.; Murat, F.; Puel, J. P.: Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, Res. notes math. 84, 19-73 (1983) · Zbl 0588.35041
[7]Boccardo, L.; Murat, F.; Puel, J. P.: Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. mat. Pura appl. 152, No. 4, 183-196 (1988) · Zbl 0687.35042 · doi:10.1007/BF01766148
[8]Chong, K. M.; Rice, N. M.: Equimeasurable rearrangements of Sobolev functions, Queen’s papers in pure and appl. Math. 28 (1971) · Zbl 0275.46024
[9]De Giorgi, E.: Su una generate Della misura (r-1) dimensionale in uno spazio ad r-dimensioni, Ann. mat. Pura appl. 36, 191-213 (1954) · Zbl 0055.28504 · doi:10.1007/BF02412838
[10]Ferone, A.: A symmetrization for degenerate Neumann problems, Rend. accad. Sci. fis. Mat. napoli 60, No. 4, 27-46 (1993) · Zbl 1162.35380
[11]Ferone, V.; Messano, B.: Comparison and existence results for classes of nonlinear elliptic equations with general growth in the gradient, Adv. nonlinear stud. 7, No. 1, 31-46 (2007)
[12]Ferone, A.; Volpicelli, R.: Some relations between pseudo-rearrangement and relative rearrangement, Nonlinear anal. 41, 855-869 (2000) · Zbl 1008.28003 · doi:10.1016/S0362-546X(98)00313-7
[13]Federer, H.; Fleming, W. H.: Normal and integral currents, Ann. of math. 72 (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[14]Fleming, W. H.; Rishel, R.: An integral formula for total gradient variation, Arch. math. 11, 218-222 (1960) · Zbl 0094.26301 · doi:10.1007/BF01236935
[15]Kawohl, B.: Rearrangements and convexity of level sets in PDE, Lecture notes in math. 1150 (1985) · Zbl 0593.35002
[16]Kesavan, S.: Symmetrization and applications, Ser. anal. 3 (2006) · Zbl 1110.35002
[17]Korkut, L.; Pašić, M.; Žubrinić, D.: A singular ODE related to quasilinear elliptic equations, Electron. J. Differential equations 12, 1-37 (2000) · Zbl 0939.35064 · doi:emis:journals/EJDE/Volumes/2000/12/abstr.html
[18]Maderna, C.; Salsa, S.: Symmetrization in Neumann problems, Appl. anal. 9, No. 4, 247-256 (1979) · Zbl 0422.35027 · doi:10.1080/00036817908839273
[19]Maderna, C.; Salsa, S.: A priori bounds in nonlinear Neumann problems, Boll. unione mat. Ital. sez. B 16, 1144-1153 (1979) · Zbl 0427.35016
[20]Messano, B.: Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient, Nonlinear anal. 64, No. 12, 2688-2703 (2006)
[21]Mossino, J.: Inégalités isopérimétriques et applications en physique, Travaux en cours (1984) · Zbl 0537.35002
[22]Pašić, M.: Isoperimetric inequalities in quasilinear elliptic equations of Leray-lions type, J. math. Pures appl. (9) 75, No. 4, 343-366 (1996) · Zbl 0859.35028
[23]Pašić, M.: Nonexistence of spherically symmetric solutions for p-Laplacian in the ball, C. R. Math. acad. Sci. soc. R. can. 21, No. 1, 16-22 (1999) · Zbl 0926.35039
[24]Rakotoson, J. M.: Some properties of the relative rearrangements, J. math. Anal. appl. 135, No. 2, 488-500 (1988) · Zbl 0686.28003 · doi:10.1016/0022-247X(88)90169-2
[25]Rakotoson, J. M.: Réarrangement relatif. Un instrument d’estimations dans LES problémes aux limites, Math. appl. (Berlin) 64 (2008) · Zbl 1170.35036 · doi:10.1007/978-3-540-69118-1
[26]Žubrinić, D.: Solvability of quasilinear elliptic equations with strong dependence on the gradient, Abstr. appl. Anal. 5, 159-173 (2000) · Zbl 1005.35043 · doi:10.1155/S1085337500000324