zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weighted Hardy and potential operators in the generalized Morrey spaces. (English) Zbl 1211.42018
The authors study the weighted pq-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces p,φ ( n ,w) defined by an almost increasing function φ(r) and radial type weight w(|x|) from the Bary-Stechkin-type class. Sufficient conditions are obtained, in terms of some integral inequalities imposed on φ and w, for such a pq-boundedness. In the case of local spaces the obtained conditions are also necessary. These results are applied to derive a similar weighted pq-boundedness of the Riesz potential operator.
MSC:
42B25Maximal functions, Littlewood-Paley theory
47B38Operators on function spaces (general)
47G40Potential operators
References:
[1]Adams, D. R.: A note on Riesz potentials, Duke math. J. 42, No. 4, 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2]Adams, D. R.; Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities, Indiana univ. Math. J. 53, No. 6, 1631-1666 (2004) · Zbl 1100.31009 · doi:10.1512/iumj.2004.53.2470
[3]Alvarez, J.: The distribution function in the Morrey space, Proc. amer. Math. soc. 83, 693-699 (1981) · Zbl 0478.46025 · doi:10.2307/2044236
[4]Arai, H.; Mizuhara, T.: Morrey spaces on spaces of homogeneous type and estimates for b and the Cauchy-Szego projection, Math. nachr. 185, No. 1, 5-20 (1997) · Zbl 0876.42011 · doi:10.1002/mana.3211850102
[5]Bari, N. K.; Stechkin, S. B.: Best approximations and differential properties of two conjugate functions, Proc. Moscow math. Soc. 5, 483-522 (1956)
[6]Bennett, C.; Sharpley, R.: Interpolation of operators, Pure appl. Math. 129 (1988) · Zbl 0647.46057
[7]Burenkov, V. I.; Guliyev, H.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Studia math. 163, No. 2, 157-176 (2004) · Zbl 1044.42015 · doi:10.4064/sm163-2-4 · doi:http://journals.impan.gov.pl/sm/Inf/163-2-4.html
[8]Burenkov, V. I.; Guliev, V.; Guliyev, H.: Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces, J. comput. Appl. math. 208, No. 1, 280-301 (2007) · Zbl 1134.46014 · doi:10.1016/j.cam.2006.10.085
[9]Chiarenza, F.; Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function, Rend. math. 7, 273-279 (1987) · Zbl 0717.42023
[10]Di Fazio, G.; Ragusa, M. A.: Commutators and Morrey spaces, Boll. unione mat. Ital. 7, No. 5-A, 323-332 (1991) · Zbl 0761.42009
[11]Ding, Y.; Lu, S.: Boundedness of homogeneous fractional integrals on lp for n/a<p, Nagoya math. J. 167, 17-33 (2002) · Zbl 1031.42015 · doi:euclid:nmj/1114649290
[12]Eridani; Gunawan, H.; Nakai, E.: On generalized fractional integral operators, Sci. math. Jpn. 60, 539-550 (2004) · Zbl 1058.42007
[13]Giaquinta, M.: Multiple integrals in the calculus of variations and non-linear elliptic systems, (1983)
[14]V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in Rn, Doctor’s degree dissertation, Mat. Inst. Steklov, Moscow, 1994, 329 pp. (in Russian).
[15]Guliyev, V. S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, (1999)
[16]V. Guliev, J. Hasanov, S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand. 108 (2010), in press.
[17]Gunawan, H.; Eridani: Fractional integrals and generalized olsen inequalities, Kyungpook math. J. 49, No. 1, 31-39 (2009) · Zbl 1181.26016
[18]Karapetiants, N. K.; Samko, N. G.: Weighted theorems on fractional integrals in the generalized hölder spaces h0w(ρ) via the indices mw and mw, Fract. calc. Appl. anal. 7, No. 4, 437-458 (2004) · Zbl 1114.26005
[19]Kokilashvili, V.; Samko, S.: The maximal operator in weighted variable exponent spaces on metric spaces, Georgian math. J. 15, No. 4, 683-712 (2008) · Zbl 1167.42312 · doi:http://www.heldermann.de/GMJ/GMJ15/GMJ154/gmj15055.htm
[20]Krein, S. G.; Petunin, Yu.I.; Semenov, E. M.: Interpolation of linear operators, (1978) · Zbl 0499.46044
[21]Kufner, A.; John, O.; Fučik, S.: Function spaces, (1977)
[22]Kufner, A.; Persson, L. -E.: Weighted inequalities of Hardy type, (2003)
[23]Kurata, K.; Nishigaki, S.; Sugano, S.: Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators, Proc. amer. Math. soc. 128, 1125-1134 (2000) · Zbl 0958.35024 · doi:10.1090/S0002-9939-99-05208-9
[24]Maligranda, L.: Indices and interpolation, Dissertationes math. (Rozprawy mat.) 234, 49 (1985) · Zbl 0566.46038
[25]Maligranda, L.: Orlicz spaces and interpolation, (1989) · Zbl 0874.46022
[26]Matuszewska, W.; Orlicz, W.: On some classes of functions with regard to their orders of growth, Studia math. 26, 11-24 (1965) · Zbl 0134.31604
[27]Morrey, C. B.: On the solutions of quasi-linear elliptic partial differential equations, Trans. amer. Math. soc. 43, 126-166 (1938) · Zbl 0018.40501 · doi:10.2307/1989904
[28]Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. nachr. 166, 95-103 (1994) · Zbl 0837.42008 · doi:10.1002/mana.19941660108
[29]Nakai, E.: On generalized fractional integrals, Taiwanese J. Math. 5, No. 3, 587-602 (2001) · Zbl 0990.26007
[30]Nakai, E.; Sumitomo, H.: On generalized Riesz potentials and spaces of some smooth functions, Sci. math. Jpn. 54, No. 3, 463-472 (2001) · Zbl 0995.43004
[31]Palagachev, D. K.; Softova, L. G.: Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s, Potential anal. 20, 237-263 (2004) · Zbl 1036.35045 · doi:10.1023/B:POTA.0000010664.71807.f6
[32]Peetre, J.: On convolution operators leaving lp,λ spaces invariant, Ann. mat. Pura appl. 72, No. 1, 295-304 (1966) · Zbl 0149.09102 · doi:10.1007/BF02414340
[33]Peetre, J.: On the theory of lp,λ spaces, J. funct. Anal. 4, 71-87 (1969) · Zbl 0175.42602 · doi:10.1016/0022-1236(69)90022-6
[34]Ragusa, M. A.: Commutators of fractional integral operators on vanishing-Morrey spaces, J. global optim. 40, No. 1-3, 361-368 (2008) · Zbl 1143.42020 · doi:10.1007/s10898-007-9176-7
[35]Samko, N.; Samko, S.; Vakulov, B.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent, J. math. Anal. appl. 335, 560-583 (2007) · Zbl 1142.46018 · doi:10.1016/j.jmaa.2007.01.091
[36]Samko, N. G.: Singular integral operators in weighted spaces with generalized hölder condition, Proc. A. Razmadze math. Inst. 120, 107-134 (1999) · Zbl 0946.45006
[37]Samko, N. G.: On non-equilibrated almost monotonic functions of the Zygmund-bary-stechkin class, Real anal. Exchange 30, No. 2, 727-745 (2004) · Zbl 1106.26012
[38]Samko, N. G.: Weighted Hardy and singular operators in Morrey spaces, J. math. Anal. appl. 350, 56-72 (2009) · Zbl 1155.42005 · doi:10.1016/j.jmaa.2008.09.021
[39]N.G. Samko, Weighted Hardy and potential operators in Morrey spaces, J. Funct. Spaces Appl. (2011), in press.
[40]Y. Sawano, S. Sugano, H. Tanaka, A note on generalized fractional integral operators on generalized Morrey spaces, Boundary Value Problems (2009), doi:10.1155/2009/835865. · Zbl 1202.47056 · doi:10.1155/2009/835865
[41]Shirai, S.: Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces, Hokkaido math. J. 35, No. 3, 683-696 (2006) · Zbl 1122.42007
[42]Spanne, S.: Some function spaces defined by using the mean oscillation over cubes, Ann. sc. Norm. super. Pisa 19, 593-608 (1965) · Zbl 0199.44303 · doi:numdam:ASNSP_1965_3_19_4_593_0
[43]Stampacchia, G.: The spaces lp,λ,N(p,λ) and interpolation, Ann. sc. Norm. super. Pisa 3, No. 19, 443-462 (1965) · Zbl 0149.09202 · doi:numdam:ASNSP_1965_3_19_3_443_0
[44]Taylor, M. E.: Tools for PDE: pseudodifferential operators, paradifferential operators, and layer potentials, Math. surveys monogr. 81 (2000) · Zbl 0963.35211