zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hermite interpolation by hypocycloids and epicycloids with rational offsets. (English) Zbl 1211.65018
The authors show that all rational hypo- and epicycloids have Pythagorean normals and therefore also have rational offsets. Based on this observation, an efficient algorithm for G 1 Hermite interpolation with their arcs is constructed. For all regular data, there is a unique hypo- or epicycloidal arc of the given canonical type.
65D05Interpolation (numerical methods)
65D17Computer aided design (modeling of curves and surfaces)
[1]Elber, G.; Lee, I. -K.; Kim, M. -S.: Comparing offset curve approximation methods, IEEE computer graphics and applications 17, 62-71 (1998)
[2]Farouki, R. T.: Pythagorean-hodograph curves in practical use, Geometry processing for design and manufacturing, 3-33 (1992) · Zbl 0770.41017
[3]Farouki, R. T.: Pythagorean-hodograph curves, Handbook of computer aided geometric design, 405-427 (2002)
[4]Farouki, R. T.: Pythagorean-hodograph curves: algebra and geometry inseparable, (2008)
[5]Farouki, R. T.; Neff, C. A.: Hermite interpolation by Pythagorean-hodograph quintics, Mathematics of computation 64, No. 212, 1589-1609 (1995) · Zbl 0847.68125 · doi:10.2307/2153373
[6]Farouki, R. T.; Rampersad, J.: Cycles upon cycles: an anecdotal history of higher curves in science and engineering, Mathematical methods for curves and surfaces II, 95-116 (1998) · Zbl 0904.65017
[7]Farouki, R. T.; Sakkalis, T.: Pythagorean hodographs, IBM journal of research and development 34, No. 5, 736-752 (1990)
[8]Gindikin, S.: Tales of mathematicians and physicists, (2007)
[9]Gravesen, J.; Jüttler, B.; Šír, Z.: On rationally supported surfaces, Computer aided geometric design 25, 320-331 (2008) · Zbl 1172.53303 · doi:10.1016/j.cagd.2007.10.005
[10]Jüttler, B.: Triangular Bézier surface patches with linear normal vector field, The mathematics of surfaces VIII, 431-446 (1998) · Zbl 0959.65038
[11]Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven, Mathematics of computation 70, 1089-1111 (2001) · Zbl 0963.68210 · doi:10.1090/S0025-5718-00-01288-6
[12]Kong, J. H.; Jeong, S. P.; Lee, S.; Kim, G. I.: C1 Hermite interpolation with simple planar PH curves by speed reparametrization, Computer aided geometric design 25, 214-229 (2008) · Zbl 1172.65309 · doi:10.1016/j.cagd.2007.11.006
[13]Lávička, M.; Bastl, B.: Rational hypersurfaces with rational convolutions, Computer aided geometric design 24, No. 7, 410-426 (2007) · Zbl 1171.65341 · doi:10.1016/j.cagd.2007.04.006
[14]Lávička, M., Bastl, B., Šír, Z., 2010. Reparameterization of curves and surfaces with respect to convolutions. In: Dæhlen, M., et al. (Eds.), MMCS 2008. In: Lecture Notes in Computer Science, vol. 5862, pp. 285 – 298
[15]Lü, W.: Offset-rational parametric plane curves, Computer-aided design 12, 601-616 (1995) · Zbl 0875.68853 · doi:10.1016/0167-8396(94)00036-R
[16]Maekawa, T.: An overview of offset curves and surfaces, Computer-aided design 31, 165-173 (1999) · Zbl 1053.68747 · doi:10.1016/S0010-4485(99)00013-5
[17]Maor, E.: Trigonometric delights, (1998) · Zbl 0924.01001
[18]Mäurer, C.; Jüttler, B.: Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics, Journal for geometry and graphics 3, 141-159 (1999) · Zbl 0976.53003 · doi:emis:journals/JGG/3.2/2.html
[19]Meek, D. S.; Walton, D. J.: Geometric Hermite interpolation with tschirnhausen cubics, Journal of computational and applied mathematics 81, 299-309 (1997) · Zbl 0880.65003 · doi:10.1016/S0377-0427(97)00066-6
[20]Pham, B.: Offset curves and surfaces: a brief survey, Computer-aided design 24, 223-229 (1992)
[21]Piegl, L.; Tiller, W.: The NURBS book, (1995)
[22]Piegl, L.; Tiller, W.: Computing offsets of NURBS curves and surfaces, Computer-aided design 31, 147-156 (1999) · Zbl 1053.68749 · doi:10.1016/S0010-4485(98)00066-9
[23]Pottmann, H.: Curve design with rational Pythagorean-hodograph curves, Advances in computational mathematics 3, 147-170 (1995) · Zbl 0831.65013 · doi:10.1007/BF03028365
[24]Pottmann, H.: Rational curves and surfaces with rational offsets, Computer aided geometric design 12, No. 2, 175-192 (1995) · Zbl 0872.65011 · doi:10.1016/0167-8396(94)00008-G
[25]Sánchez-Reyes, J.: Bézier representation of epitrochoids and hypotrochoids, Computer-aided design 31, 747-750 (1999) · Zbl 1038.68578 · doi:10.1016/S0010-4485(99)00061-5
[26]Šír, Z.; Feichtinger, R.; Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics, Computer-aided design 38, 608-618 (2006)
[27]Šír, Z.; Gravesen, J.; Jüttler, B.: Computing convolutions and Minkowski sums via support functions, Curve and surface design. Proceedings 6th international conference on curves and surfaces, 244-253 (2007) · Zbl 1130.65024
[28]Šír, Z.; Gravesen, J.; Jüttler, B.: Curves and surfaces represented by polynomial support functions, Theoretical computer science 392, 141-157 (2008) · Zbl 1134.68062 · doi:10.1016/j.tcs.2007.10.009
[29]Yates, R. C.: Curves and their properties, (1974)
[30]Zhao, H. -Y.; Wang, G. -J.: Error analysis of reparametrization based approaches for curve offsetting, Computer-aided design 39, 142-148 (2007)