zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The effective conductivity of random checkerboards. (English) Zbl 1211.78010
Summary: An algorithm is presented for the fast and accurate solution of the electrostatic equation on multi-component random checkerboards. It relies on a particular choice of integral equation, extended as to separate ill-conditioning due to singular fields in corners from ill-conditioning due to interaction of clusters of well-conducting squares at large distances. Two separate preconditioners take care of the two separate phenomena. In a series of numerical examples, effective conductivities are computed for random checkerboards containing up to 10 4 squares with conductivity ratios of up to 10 6 . The achievable relative precision in these examples is on the order of 10 -11 .
MSC:
78A30Electro- and magnetostatics
78M25Numerical methods in optics
45B05Fredholm integral equations
65F08Preconditioners for iterative methods
65F22Ill-posedness, regularization (numerical linear algebra)
References:
[1]Berggren, S. A.; Lukkassen, D.; Meidell, A.; Simula, L.: A new method for numerical solution of checkerboard fields, J. appl. Math. 1, No. 4, 157-173 (2001) · Zbl 1094.74675 · doi:10.1155/S1110757X01000316
[2]Bremer, J.; Rokhlin, V.: Efficient discretization of Laplace boundary integral equations on polygonal domains, J. comput. Phys. 229, No. 7, 2507-2525 (2010) · Zbl 1185.65219 · doi:10.1016/j.jcp.2009.12.001
[3]Briane, M.; Capdeboscq, Y.: Expansion formulae for the homogenized determinant of anisotropic checkerboards, Proc. R. Soc. lond. A 462, No. 2073, 2759-2779 (2006) · Zbl 1149.15300 · doi:10.1098/rspa.2006.1690
[4]Chen, Y.; Schuh, C. A.: Effective transport properties of random composites: continuum calculations versus mapping to a network, Phys. rev. E 80, No. 4, 040103 (2009)
[5]Craster, R. V.; Obnosov, Y. V.: A three-phase tessellation: solution and effective properties, Proc. R. Soc. lond. A 460, No. 2044, 1017-1037 (2004) · Zbl 1070.74037 · doi:10.1098/rspa.2003.1196
[6]Craster, R. V.; Obnosov, Y. V.: A model four-phase checkerboard structure, Q. J. Mech. appl math. 59, No. 1, 1-27 (2006) · Zbl 1188.78007 · doi:10.1093/qjmam/hbi026
[7]Dykhne, A. M.: Conductivity of a two-dimensional two-phase system, Sov. phys. JETP 32, No. 1, 63-65 (1971)
[8]Edwards, R. G.; Goodman, J.; Sokal, A. D.: Multigrid method for the random-resistor problem, Phys. rev. Lett. 61, No. 12, 1333-1335 (1988)
[9]Fel, L. G.; Kaganov, I. V.: Relation between effective conductivity and susceptibility of two-component rhombic checkerboard, J. phys. A 36, No. 19, 5349-5358 (2003) · Zbl 1032.78013 · doi:10.1088/0305-4470/36/19/311
[10]Gardiner, J. D.; Laub, A. J.; Amato, J. J.; Moler, C. B.: Solution of the Sylvester matrix equation AXBT+CXDT=E, ACM trans. Math. softw. 18, No. 2, 223-231 (1992) · Zbl 0893.65026 · doi:10.1145/146847.146929 · doi:http://www.acm.org/pubs/contents/journals/toms/1992-18/
[11]Greengard, L.; Lee, J. -Y.: Electrostatics and heat conduction in high contrast composite materials, J. comput. Phys. 211, No. 1, 64-76 (2006) · Zbl 1129.78005 · doi:10.1016/j.jcp.2005.05.004
[12]Greengard, L.; Rokhlin, V.: A fast algorithm for particle simulations, J. comput. Phys. 73, No. 2, 325-348 (1987) · Zbl 0629.65005 · doi:10.1016/0021-9991(87)90140-9
[13]Helsing, J.; Ojala, R.: On the evaluation of layer potentials close to their sources, J. comput. Phys. 227, No. 5, 2899-2921 (2008) · Zbl 1135.65404 · doi:10.1016/j.jcp.2007.11.024
[14]Helsing, J.; Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning, J. comput. Phys. 227, No. 20, 8820-8840 (2008) · Zbl 1152.65114 · doi:10.1016/j.jcp.2008.06.022
[15]Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type, J. comput. Phys. 228, No. 23, 8892-8907 (2009) · Zbl 1177.65176 · doi:10.1016/j.jcp.2009.09.004
[16]Henderson, H. V.; Searle, S. R.: On deriving the inverse of a sum of matrices, SIAM rev. 23, No. 1, 53-60 (1981) · Zbl 0451.15005 · doi:10.1137/1023004
[17]Keller, J. B.: A theorem on the conductivity of a composite medium, J. math. Phys. 5, No. 4, 548-549 (1964) · Zbl 0129.44001 · doi:10.1063/1.1704146
[18]Martinsson, P. G.: A fast direct solver for a class of elliptic partial differential equations, J. sci. Comput. 38, No. 3, 316-330 (2009) · Zbl 1203.65066 · doi:10.1007/s10915-008-9240-6
[19]Mendelson, K. S.: A theorem on the effective conductivity of two-dimensional heterogeneous medium, J. appl. Phys. 46, No. 11, 4740-4741 (1975)
[20]Milton, G. W.: Proof of a conjecture on the conductivity of checkerboards, J. math. Phys. 42, No. 10, 4873-4882 (2001) · Zbl 1063.82018 · doi:10.1063/1.1385564
[21]Ovchinnikov, Y. N.: Conductivity of a periodic two-component system of rhombic type, J. exp. Theor. phys. 98, No. 1, 162-169 (2004)
[22]Saad, Y.; Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. stat. Comp. 7, No. 3, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[23]Tuncer, E.; Serdyuk, Y. V.; Gubanski, S. M.: Dielectric mixtures: electrical properties and modeling, IEEE trans. Diel. electr. Insul. 9, No. 5, 809-828 (2002)