zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parallel identical machines scheduling with deteriorating jobs and total absolute differences penalties. (English) Zbl 1211.90085
Summary: In this paper we consider parallel identical machines scheduling problems with deteriorating jobs. In this model, job processing times are defined by functions of their starting times. We concentrate on two goals separately, namely, minimizing the total absolute differences in completion times (TADC) and the total absolute differences in waiting times (TADW). We show that the problems remains polynomially solvable under the proposed model.
MSC:
90B35Scheduling theory, deterministic
References:
[1]Alidaee, B.; Womer, N. K.: Scheduling with time dependent processing times: review and extensions, J. oper. Res. soc. 50, 711-720 (1999) · Zbl 1054.90542
[2]Cheng, T. C. E.; Ding, Q.; Lin, B. M. T.: A concise survey of scheduling with time-dependent processing times, Eur. J. Oper. res. 152, 1-13 (2004) · Zbl 1030.90023 · doi:10.1016/S0377-2217(02)00909-8
[3]Cheng, T. C. E.; Kang, L.; Ng, C. T.: Due-date assignment and single machine scheduling with deteriorating jobs, J. oper. Res. soc. 55, 198-203 (2004) · Zbl 1095.90036 · doi:10.1057/palgrave.jors.2601681
[4]Cheng, T. C. E.; Kang, L.; Ng, C. T.: Single machine due-date scheduling of jobs with decreasing start-time dependent processing times, Int. trans. Oper. res. 12, 355-366 (2005) · Zbl 1131.90355 · doi:10.1111/j.1475-3995.2005.501_1.x
[5]Cheng, T. C. E.; Kang, L. Y.; Ng, C. T.: Due-date assignment and parallel-machine scheduling with deteriorating jobs, J. oper. Res. soc. 58, 1103-1108 (2007)
[6]Wang, J. -B.; Xia, Z. -Q.: Scheduling jobs under decreasing linear deterioration, Inf. process. Lett. 94, 63-69 (2005) · Zbl 1182.68359 · doi:10.1016/j.ipl.2004.12.018
[7]Wang, J. -B.; Xia, Z. -Q.: Flow shop scheduling with deteriorating jobs under dominating machines, Omega 34, 327-336 (2006)
[8]Wang, J. -B.; Xia, Z. -Q.: Flow shop scheduling problems with deteriorating jobs under dominating machines, J. oper. Res. soc. 57, 220-226 (2006) · Zbl 1090.90095 · doi:10.1057/palgrave.jors.2601959
[9]Janiak, A.; Kovalyov, M. Y.: Scheduling in a contaminated area: a model and polynomial algorithms, Eur. J. Oper. res. 173, 125-132 (2006) · Zbl 1125.90354 · doi:10.1016/j.ejor.2004.12.012
[10]Gawiejnowicz, S.; Kurc, W.; Pankowska, L.: Pareto and scalar bicriterion optimization in scheduling deteriorating jobs, Comput. oper. Res. 33, 746-767 (2006) · Zbl 1116.90045 · doi:10.1016/j.cor.2004.07.016
[11]Gawiejnowicz, S.: Scheduling deteriorating jobs subject to job or machine availability constraints, Eur. J. Oper. res. 180, 472-478 (2007) · Zbl 1114.90034 · doi:10.1016/j.ejor.2006.04.021
[12]Kang, L.; Ng, C. T.: A note on a fully polynomial-time approximation scheme for parallel-machine scheduling with deteriorating jobs, Int. J. Prod. econ. 109, 180-184 (2007)
[13]Wang, J. -B.: Flow shop scheduling problems with decreasing linear deterioration under dominating machines, Comput. oper. Res. 34, 2043-2058 (2007) · Zbl 1193.90116 · doi:10.1016/j.cor.2005.08.008
[14]Wu, C. -C.; Lee, W. -C.; Shiau, Y. -R.: Minimizing the total weighted completion time on a single machine under linear deterioration, Int. J. Adv. manuf. Technol. 33, 1237-1243 (2007)
[15]Wu, C. -C.; Shiau, Y. -R.; Lee, W. -C.: Single-machine group scheduling problems with deterioration consideration, Computers and operations research 35, 1652-1659 (2008) · Zbl 1211.90094 · doi:10.1016/j.cor.2006.09.008
[16]Kuo, W. -H.; Yang, D. -L.: A note on due-date assignment and single-machine scheduling with deteriorating jobs, J. oper. Res. soc. 59, 857-859 (2008) · Zbl 1153.90427 · doi:10.1057/palgrave.jors.2602396
[17]Oron, D.: Single machine scheduling with simple linear deterioration to minimize total absolute deviation of completion times, Comput. oper. Res. 35, 2071-2078 (2008) · Zbl 1139.90012 · doi:10.1016/j.cor.2006.10.010
[18]Wang, J. -B.; Lin, L.; Shan, F.: Single machine group scheduling problems with deteriorating jobs, Int. J. Adv. manuf. Technol. 39, 808-812 (2008)
[19]Wang, J. -B.: Single machine scheduling with a time-dependent learning effect and deteriorating jobs, J. oper. Res. soc. 60, 583-586 (2009) · Zbl 1163.90515 · doi:10.1057/palgrave.jors.2602607
[20]Wang, J. -B.; Jiang, Y.; Wang, G.: Single machine scheduling with past-sequence-dependent setup times and effects of deterioration and learning, Int. J. Adv. manuf. Technol. 41, 1221-1226 (2009)
[21]Kuo, W. -H.; Hsu, C. -J.; Yang, D. -L.: A note on unrelated parallel machine scheduling with time-dependent processing times, J. oper. Res. soc. 60, 431-434 (2009) · Zbl 1156.90366 · doi:10.1057/palgrave.jors.2602576
[22]Lee, W. -C.; Wu, C. -C.; Chung, Y. -H.; Liu, H. -C.: Minimizing the total completion time in permutation flow shop with machine-dependent job deterioration rates, Comput. oper. Res. 36, 2111-2121 (2009) · Zbl 1179.90142 · doi:10.1016/j.cor.2008.07.008
[23]Cheng, T. C. E.; Lee, W. -C.; Wu, C. -C.: Single-machine scheduling with deteriorating functions for job processing times, Appl. math. Modell. 34, 4171-4178 (2010) · Zbl 1201.90073 · doi:10.1016/j.apm.2010.04.014
[24]Wang, J. -B.; Guo, Q.: A due-date assignment problem with learning effect and deteriorating jobs, Appl. math. Modell. 34, 309-313 (2010) · Zbl 1185.90099 · doi:10.1016/j.apm.2009.04.020
[25]Wei, C. -M.; Wang, J. -B.: Single machine quadratic penalty function scheduling with deteriorating jobs and group technology, Appl. math. Modell. 34, 3642-3647 (2010) · Zbl 1201.90090 · doi:10.1016/j.apm.2010.03.014
[26]Lee, W. C.; Wang, W. J.; Shiau, Y. R.; Wu, C. C.: A single-machine scheduling problem with two-agent and deteriorating jobs, Appl. math. Modell. (2010)
[27]Sun, L. -H.; Sun, L. -Y.; Wang, J. -B.: Single-machine scheduling to minimize total absolute differences in waiting times under simple linear deterioration, J. oper. Res. soc. (2010)
[28]Wang, J. -B.; Wang, J. -J.; Ji, P.: Scheduling jobs with chain precedence constraints and deteriorating jobs, J. oper. Res. soc. (2010)
[29]Merten, A. G.; Muller, M. E.: Variance minimization in single machine sequencing problems, Manage. sci. 18, 518-528 (1972) · Zbl 0254.90040 · doi:10.1287/mnsc.18.9.518
[30]Schrage, L.: Minimizing the time-in-system variance for a finite jobset, Manage. sci. 21, 540-543 (1975) · Zbl 0302.90021 · doi:10.1287/mnsc.21.5.540
[31]Eilon, S.; Chowdhury, I. E.: Minimizing waiting time variance in the single machine problem, Manage. sci. 23, 567-575 (1977) · Zbl 0362.90051 · doi:10.1287/mnsc.23.6.567
[32]Vani, V.; Raghavachari, M.: Deterministic and random single machine sequencing with variance minimization, Oper. res. 35, 111-120 (1987) · Zbl 0616.90027 · doi:10.1287/opre.35.1.111
[33]Kanet, J. J.: Minimizing variation of flow time in single machine systems, Manage. sci. 27, No. 12, 1453-1459 (1981) · Zbl 0473.90048 · doi:10.1287/mnsc.27.12.1453
[34]Bagchi, U. B.: Simultaneous minimization of mean and variation of flow-time and waiting time in single machine systems, Oper. res. 37, 118-125 (1989) · Zbl 0661.90046 · doi:10.1287/opre.37.1.118
[35]Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. discrete math. 5, 287-326 (1979) · Zbl 0411.90044
[36]Hardy, G. H.; Littlewood, J. E.; Polya, G.: Inequalities, (1967)
[37]Stirzaker, D.: Elementary probability, (1995)
[38]Mosheiov, G.: Minimizing total absolute deviation of job completion times: extensions to position-dependent processing times and parallel identical machines, J. oper. Res. soc. 59, 1422-1424 (2008) · Zbl 1155.90392 · doi:10.1057/palgrave.jors.2602480