zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On parameterized Lyapunov-Krasovskii functional techniques for investigating singular time-delay systems. (English) Zbl 1211.93067
Summary: The problem of robust stability of a singular time-delay system is investigated. A novel Lyapunov-Krasovskii Functional (LKF) is introduced which is a singular-type complete quadratic Lyapunov-Krasovskii functional with polynomial parameters. Stability conditions are derived in the form of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness and lower conservatism of the new proposed stability criterion.
MSC:
93C15Control systems governed by ODE
93D09Robust stability of control systems
93D30Scalar and vector Lyapunov functions
References:
[1]Dai, L.: Singular control systems, (1998)
[2]Lewis, F. L.: A survey of linear singular systems, Circuits, systems, and signal processing 5, 3-36 (1986) · Zbl 0613.93029 · doi:10.1007/BF01600184
[3]Gu, K.; Niculescu, S.: Survey on recent results in the stability and control of time-delay systems, Journal of dynamic systems, measurement, and control 125, No. 2, 158-166 (2003)
[4]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time delay systems, (2003)
[5]Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov based approach, Journal of mathematical analysis and applications 273, 24-44 (2002) · Zbl 1032.34069 · doi:10.1016/S0022-247X(02)00202-0
[6]Fridman, E.; Shaked, U.: Robust H control of linear state–delay descriptor systems: an LMI approach, Linear algebra and its applications 351–352, 271-302 (2002) · Zbl 1006.93021 · doi:10.1016/S0024-3795(01)00563-8
[7]Xu, S.; Dooren, P. V.; Stefan, R.; Lam, J.: Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE transactions on automatic control 47, No. 7, 1122-1128 (2002)
[8]Su, H.; Ji, X.; Chu, J.: Delay-dependent robust control for uncertain singular time-delay systems, Asian journal of control 8, No. 2, 180-189 (2006)
[9]Zhu, S.; Zhang, C.; Cheng, Z.; Feng, J.: Delay dependent robust stability criteria for two classes of uncertain singular time delay systems, IEEE transactions on automatic control 52, No. 4, 880-885 (2007)
[10]Xu, S.; Lam, J.; Zou, Y.: An improved characterization of bounded realness for singular delay systems and its applications, International journal of robust and nonlinear control 18, 263-277 (2008)
[11]Feng, Y.; Zhu, X.; Zhang, Q.: Delay dependent stability criteria for singular time delay systems, Acta automatica sinica 36, No. 3, 433-437 (2010)
[12]Kharitonov, V.; Zhabko, A.: Lyapunov–Krasovskiĭ approach to the robust stability analysis of time delay systems, Automatica 39, 15-20 (2003) · Zbl 1014.93031 · doi:10.1016/S0005-1098(02)00195-4
[13]Gu, K.: Discretized LMI set in the stability problem of linear time delay system, International journal of control 68, 923-934 (1997)
[14]A. Seuret, K.H. Johansson, Stabilization of time-delay systems through linear differential equations using a descriptor representation, in: European Control Conference, Budapest, Hungary, August 23–26, 2009, pp.4727–4732.
[15]Peterson, I. R.: A stabilization algorithm for a class uncertain linear systems, Systems control letters 8, 351-357 (1987)