zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A parametrized Newton method for nonsmooth equations with finitely many maximum functions. (English) Zbl 1212.65203
Summary: We propose a parametrized Newton method for nonsmooth equations with finitely many maximum functions. The convergence of this method is proved and numerical experiments are listed.
MSC:
65H10Systems of nonlinear equations (numerical methods)
References:
[1]X. Chen, L. Qi: A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Comput. Optim. Appl. 3 (1994), 157–179. · Zbl 0821.65029 · doi:10.1007/BF01300972
[2]F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983.
[3]Y. Gao: Newton methods for solving two classes of nonsmooth equations. Appl. Math. 46 (2001), 215–229. · Zbl 1068.65063 · doi:10.1023/A:1013791923957
[4]R. Mifflin: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim. 15 (1997), 959–972. · Zbl 0376.90081 · doi:10.1137/0315061
[5]J. S. Pang, L. Qi: Nonsmooth equations: Motivation and algorithms. SIAM J. Optim. 3 (1993), 443–465. · Zbl 0784.90082 · doi:10.1137/0803021
[6]F.A. Potra, L. Qi, D. Sun: Secant methods for semismooth equations. Numer. Math. 80 (1998), 305–324. · Zbl 0914.65051 · doi:10.1007/s002110050369
[7]L. Qi, J. Sun: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58 (1993), 353–367. · Zbl 0780.90090 · doi:10.1007/BF01581275
[8]L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1993), 227–244. · Zbl 0776.65037 · doi:10.1287/moor.18.1.227
[9]M. J. Śmietański: An approximate Newton method for non-smooth equations with finite max functions. Numer. Algorithms 41 (2006), 219–238. · Zbl 1141.65031 · doi:10.1007/s11075-005-9009-z
[10]M. J. Śmietański: On a new class parametrized Newton-like methods for semismooth equations. Appl. Math. Comput. 193 (2007), 430–437. · Zbl 1193.65074 · doi:10.1016/j.amc.2007.03.075
[11]D. Sun, J. Han: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM J. Optim. 7 (1997), 463–480. · Zbl 0872.90087 · doi:10.1137/S1052623494274970