zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A compound algorithm of denoising using second-order and fourth-order partial differential equations. (English) Zbl 1212.68383
Summary: We propose a compound algorithm for image restoration. The algorithm is a convex combination of the ROF model and the LET model with a parameter function θ. Numerical experiments demonstrate that our compound algorithm is efficient and preserves the main advantages of the two models. In particular, the errors of the compound algorithm in L 2 norm between the exact images and corresponding restored images are the smallest among the three models. For images with strong noises, the restored images of the compound algorithm are the best in the corresponding restored images. The proposed algorithm combines the fixed point method, an improved AMG method and the Krylov acceleration. It is found that the combination of these methods is efficient and robust in the image restoration.
68U10Image processing (computing aspects)
65M55Multigrid methods; domain decomposition (IVP of PDE)