zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic behavior of positive solutions of a semilinear Dirichlet problem. (English) Zbl 1213.31006

Summary: We study the asymptotic behavior of the classical unique positive solution to the following semilinear boundary value problem

Δu+a(x)u α =0,xΩ,u>0inΩ,u| Ω =0·

Here Ω is a bounded C 1,1 domain, α<1, and the function a is in C loc γ (Ω), 0<γ<1, such that there exists c>0 satisfying for each xΩ,

1 ca(x)δ(x) λ exp- δ(x) η z(t) t d tc,

where λ2, η>d=diamΩ, δ(x)=dist(x,Ω), and z is a continuous function on [0,η] with z(0)=0.

31C15Generalizations of potentials and capacities
34B27Green functions
35K10Second order parabolic equations, general
[1]Othman, S. B.; Mâagli, H.; Masmoudi, S.; Zribi, M.: Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear anal. 71, 4137-4150 (2009) · Zbl 1177.35091 · doi:10.1016/j.na.2009.02.073
[2]Brezis, H.; Oswald, L.: Remarks on sublinear elliptic equations, Nonlinear anal. 10, 55-64 (1986) · Zbl 0593.35045 · doi:10.1016/0362-546X(86)90011-8
[3]Brezis, H.; Kamin, S.: Sublinear elliptic equations in rn, Manuscripta math. 74, 87-106 (1992) · Zbl 0761.35027 · doi:10.1007/BF02567660
[4]Cîrstea, F. -C.; Radulescu, V. D.: Extremal singular solutions for degenerate logistic-type equations in anisotropic media, C. R. Acad. sci. Paris sér. I 339, 119-124 (2004) · Zbl 1101.35034 · doi:10.1016/j.crma.2004.04.025
[5]Crandall, M. G.; Rabinowitz, P. H.; Tartar, L.: On a Dirichlet problem with a singular nonlinearity, Comm. partial differential equations 2, 193-222 (1977) · Zbl 0362.35031 · doi:10.1080/03605307708820029
[6]Ghergu, M.; Radulescu, V.: Singular elliptic problems, Oxford lecture ser. Math. appl. 37 (2008)
[7]Gontara, S.; Mâagli, H.; Masmoudi, S.; Turki, S.: Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem, J. math. Anal. appl. 369, No. 2, 719-729 (2010) · Zbl 1196.35109 · doi:10.1016/j.jmaa.2010.04.008
[8]Lazer, A. C.; Mckenna, P. J.: On a singular elliptic boundary value problem, Proc. amer. Math. soc. 111, 721-730 (1991) · Zbl 0727.35057 · doi:10.2307/2048410
[9]Mâagli, H.; Zribi, M.: Existence and estimates of solutions for singular nonlinear elliptic problems, J. math. Anal. appl. 263, 522-542 (2001) · Zbl 1030.35064 · doi:10.1006/jmaa.2001.7628
[10]Zhang, Z.: The asymptotic behaviour of the unique solution for the singular Lane–emdem–Fowler equation, J. math. Anal. appl. 312, 33-43 (2005) · Zbl 1165.35377 · doi:10.1016/j.jmaa.2005.03.023
[11]Seneta, R.: Regular varying functions, Lectures notes in math. 508 (1976) · Zbl 0324.26002