zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of third order nonlinear functional dynamic equations on time scales. (English) Zbl 1213.34116

The purpose of the paper is to give oscillation criteria for the third order nonlinear functional dynamic equation

(a(t)[(r(t)x Δ (t)) Δ ] γ ) Δ +f(t,x(g(t)))=0

on a time scale 𝕋, where γ is a quotient of odd positive integers, a and r are positive rd-continuous functions on 𝕋, and the function g:𝕋𝕋 satisfies lim t g(t)= and fC(𝕋×,). Some examples are given to illustrate the main results.

MSC:
34N05Dynamic equations on time scales or measure chains
34K11Oscillation theory of functional-differential equations
References:
[1]Agarwal R., Bohner M. and Saker S. H., Oscillation of second order delay dynamic equations, Canad. Appl. Math. Quart., 13, 1–17, (2005)
[2]Bohner M. and Peterson A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, (2001)
[3]Bohner M. and Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, (2003)
[4]Bohner M. and Saker S. H., Oscillation of second order half-linear dynamic equations on discrete time scales, Internat. J. Difference Equs., 1, 208–218, (2006)
[5]Gera M., Graef J. R. and Gregus M., On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations, Nonlinear Anal., 32, 417–425, (1998) · Zbl 0945.34021 · doi:10.1016/S0362-546X(97)00483-5
[6]Došlý O. and Hilger E., A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, Special Issue on Dynamic Equations on Time Scales (Agarwal P. P., Bohner M. and O’Regan D., eds.), J. Comp. Appl. Math., 141(1–2), 571–585, (2002)
[7]Elabbasy E. M. and Hassan T. S., Oscillation of third order nonlinear functional differential equations, Diff. Eq. Appl., submitted
[8]Erbe L., Hassan T. S. and Peterson A., Oscillation criteria for nonlinear damped dynamic equations on time scales, Appl. Math. Comp., 203, 343–357, (2008) · Zbl 1162.39005 · doi:10.1016/j.amc.2008.04.038
[9]Erbe L., Hassan T. S. and Peterson A., Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. Diff. Eq. Appl., 15, 1097–1115, (2009) · Zbl 1193.34135 · doi:10.1080/10236190902785199
[10]Erbe L., Hassan T. S., Peterson A. and Saker S. H., Oscillation criteria for half-linear delay dynamic equations on time scales, Nonlinear Dynam. Sys. Th., 9, 51–68, (2009)
[11]Erbe L., Hassan T. S., Peterson A. and Saker S. H., Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Diff. Equ., 3, 227–245, (2008)
[12]Erbe L., Peterson A. and Saker S. H., Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comp. Appl. Math., 181, 92–102, (2005) · Zbl 1075.39010 · doi:10.1016/j.cam.2004.11.021
[13]Erbe L., Peterson A. and Saker S. H., Hille and Nehari type criteria for third order dynamic equations, J. Math. Anal. Appl., 329, 112–131, (2007) · Zbl 1128.39009 · doi:10.1016/j.jmaa.2006.06.033
[14]Erbe L., Peterson A. and Saker S. H., Oscillation and asymptotic behavior a third-order nonlinear dynamic equation, Canad. Quart. Appl. Math., 14, 2, (2006)
[15]Hardy G. H., Littlewood J. E. and Polya G., Inequalities, second ed., Cambridge University Press, Cambridge, (1988)
[16]Hassan T. S., Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., 345, 176–185, (2008) · Zbl 1156.34022 · doi:10.1016/j.jmaa.2008.04.019
[17]Hilger S., Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math., 18, 18–56, (1990)
[18]Kac V. and Cheung P., Quantum Calculus, Universitext, (2002)
[19]Zhang B. G. and Deng X., Oscillation of delay differential equations on time scales, Math. Comp. Mod., 36, 1307–1318, (2002) · Zbl 1034.34080 · doi:10.1016/S0895-7177(02)00278-9
[20]Şahiner Y. and Stavroulakis I. S., Oscillation of first order delay dynamic equations, Dynam. Systems Appl., 15, 645–655, (2006)
[21]Wu H., Zhuang R. and Mathsen R. M., Oscillation criteria of second-order nonlinear neutral variable delay dynamic equations, Appl. Math. Comp., 178, 321–331, (2006)