zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map. (Dynamique explosive de solutions régulières équivariantes de l’application de Schrödinger map.) (English) Zbl 1213.35139

Summary: We consider the energy critical Schrödinger map t u=uΔu to the 2-sphere for equivariant initial data of homotopy number k=1. We show the existence of a set of smooth initial data arbitrarily close to the ground state harmonic map Q 1 in the scale invariant norm H ˙ 1 which generate finite time blow up solutions. We give in addition a sharp description of the corresponding singularity formation which occurs by concentration of a universal bubble of energy

u(t,x)-e Θ * R Q 1 x λ(t)u * inH ˙ 1 astT,

where Θ * , u * H ˙ 1 , R is a rotation and the concentration rate is given for some κ(u)>0 by

λ(t)=κ(u)T-t |log(T-t)| 2 1 + o ( 1 )astT·

35B44Blow-up (PDE)
35K59Quasilinear parabolic equations
35K15Second order parabolic equations, initial value problems
[1]Bejenaru, I.; Tataru, D.: Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions
[2]I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., in press.
[3]Den Bergh, J. Van; Hulshof, J.; King, J.: Formal asymptotics of bubbling in the harmonic map heat flow, SIAM J. Appl. math. 63, 1682-1717 (2003) · Zbl 1037.35023 · doi:10.1137/S0036139902408874
[4]Chang, N. -H.; Shatah, J.; Uhlenbeck, K.: Schrödinger maps, Comm. pure appl. Math. 53, No. 5 (2000) · Zbl 1028.35134 · doi:10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
[5]Grotowski, J.; Shatah, J.: Geometric evolution equations in critical dimensions, Calc. var. Partial differential equations 30, No. 4, 499-512 (2007) · Zbl 1127.58003 · doi:10.1007/s00526-007-0100-2
[6]Gustafson, S.; Kang, K.; Tsai, T. -P.: Schrödinger flow near harmonic maps, Comm. pure appl. Math. 60, No. 4, 463-499 (2007) · Zbl 1144.53085 · doi:10.1002/cpa.20143
[7]Gustafson, S.; Kang, K.; Tsai, T. -P.: Asymptotic stability of harmonic maps under the Schrödinger flow, Duke math. J. 145, No. 3, 537-583 (2008) · Zbl 1170.35091 · doi:10.1215/00127094-2008-058
[8]Gustafson, S.; Nakanishi, K.; Tsai, T. -P.: Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau lifschitz and Schrödinger maps on R2, Comm. math. Phys. 300, No. 1, 205-242 (2010) · Zbl 1205.35294 · doi:10.1007/s00220-010-1116-6
[9]Krieger, J.; Schlag, W.; Tataru, D.: Renormalization and blow up for charge one equivariant critical wave maps, Invent. math. 171, No. 3, 543-615 (2008) · Zbl 1139.35021 · doi:10.1007/s00222-007-0089-3
[10]Merle, F.; Raphaël, P.: Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. funct. Anal. 13, 591-642 (2003) · Zbl 1061.35135 · doi:10.1007/s00039-003-0424-9
[11]Merle, F.; Raphaël, P.: On universality of blow up profile for L2 critical nonlinear Schrödinger equation, Invent. math. 156, 565-672 (2004) · Zbl 1067.35110 · doi:10.1007/s00222-003-0346-z
[12]Merle, F.; Raphaël, P.: Profiles and quantization of the blow up mass for critical non linear Schrödinger equation, Comm. math. Phys. 253, No. 3, 675-704 (2004) · Zbl 1062.35137 · doi:10.1007/s00220-004-1198-0
[13]Merle, F.; Raphaël, P.: Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Annals of math. 161, No. 1, 157-222 (2005) · Zbl 1185.35263 · doi:10.4007/annals.2005.161.157
[14]Merle, F.; Raphaël, P.: Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. amer. Math. soc. 19, No. 1, 37-90 (2006) · Zbl 1075.35077 · doi:10.1090/S0894-0347-05-00499-6
[15]F. Merle, P. Raphaël, I. Rodnianski, Blow up for the energy critical corotational Schrödinger map, preprint 2011.
[16]Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. anal. Geom. 3, 297-315 (1995) · Zbl 0868.58021
[17]Qing, J.; Tian, G.: Bubbling of the heat flows for harmonic maps from surface, Comm. pure appl. Math. 50, 295-310 (1997) · Zbl 0879.58017 · doi:10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5
[18]Raphaël, P.: Stability of the log-bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. ann. 331, 577-609 (2005) · Zbl 1082.35143 · doi:10.1007/s00208-004-0596-0
[19]P. Raphaël, I. Rodnianski, Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems, Publi. I.H.E.S., in press.
[20]Raphaël, P.; Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. amer. Math. soc. 24, 471-546 (2011) · Zbl 1218.35226 · doi:10.1090/S0894-0347-2010-00688-1
[21]Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces, Comm. math. Helv. 60, 558-581 (1985) · Zbl 0595.58013 · doi:10.1007/BF02567432
[22]Topping, P. M.: Winding behaviour of finite-time singularities of the harmonic map heat flow, Math. Z. 247 (2004) · Zbl 1067.53055 · doi:10.1007/s00209-003-0582-3