zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Duality and interpolation of anisotropic Triebel-Lizorkin spaces. (English) Zbl 1213.42062
Summary: We study properties of anisotropic Triebel-Lizorkin spaces associated with general expansive dilations and doubling measures on n using wavelet transforms. This paper is a continuation of [the author, J. Geom. Anal. 17, No. 3, 387–424 (2007; Zbl 1147.42006); Trans. Am. Math. Soc. 358, No. 4, 1469–1510 (2006; Zbl 1083.42016)], where we generalized the isotropic methods of dyadic ϕ-transforms of M. Frazier and B. Jawerth [J. Funct. Anal. 93, No. 1, 34–170 (1990; Zbl 0716.46031)] to the non-isotropic settings. By working at the level of sequence spaces, we identify the duals of anisotropic Triebel-Lizorkin spaces. We also obtain several real and complex interpolation results for these spaces.
42B25Maximal functions, Littlewood-Paley theory
42B35Function spaces arising in harmonic analysis
42C40Wavelets and other special systems
46B70Interpolation between normed linear spaces
47B37Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B38Operators on function spaces (general)
[1]Bergh J., Löfström J. (1976). Interpolation Spaces. Springer, Heidelberg
[2]Besov O.V., Il’in V.P., Nikol’skiĭ S.M. (1979). Integral representations of functions and imbedding theorems. Vol. I and II. V. H. Winston & Sons, Washington
[3]Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), pp. 122 (2003)
[4]Bownik M. (2005). Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250: 539–571 · Zbl 1079.42016 · doi:10.1007/s00209-005-0765-1
[5]Bownik, M.: Anisotropic Triebel-Lizorkin spaces with doubling measures. J. Geom. Anal. (to appear) (2007)
[6]Bownik M., Ho K.-P. (2006). Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Am. Math. Soc. 358: 1469–1510 · Zbl 1083.42016 · doi:10.1090/S0002-9947-05-03660-3
[7]Bownik M., Speegle D. (2002). Meyer type wavelet bases in 2 . J. Approx. Theory 116: 49–75 · Zbl 0999.42021 · doi:10.1006/jath.2001.3662
[8]Bui H.-Q. (1982). Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12: 581–605
[9]Bui H.-Q., Paluszyński M., Taibleson M.H. (1996). A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119: 219–246
[10]Bui H.-Q., Paluszyński M., Taibleson M.H. (1997). Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q<1 . J. Fourier Anal. Appl. 3: 837–846 · Zbl 0897.42010 · doi:10.1007/BF02656489
[11]Calderón A.P. (1964). Intermediate spaces and interpolation, the complex method. Studia Math. 24: 113–190
[12]Calderón A.P., Torchinsky A. (1975). Parabolic maximal function associated with a distribution. Adv. Math. 16: 1–64 · Zbl 0315.46037 · doi:10.1016/0001-8708(75)90099-7
[13]Calderón A.P., Torchinsky A. (1977). Parabolic maximal function associated with a distribution II. Adv. Math. 24: 101–171 · Zbl 0355.46021 · doi:10.1016/S0001-8708(77)80016-9
[14]Coifman R.R., Weiss G. (1977). Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83: 569–645 · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[15]Farkas W. (2000). Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 209: 83–113 · doi:10.1002/(SICI)1522-2616(200001)209:1<83::AID-MANA83>3.0.CO;2-1
[16]Fefferman C., Stein E.M. (1971). Some maximal inequalities. Am. J. Math. 93: 107–115 · Zbl 0222.26019 · doi:10.2307/2373450
[17]Frazier M., Jawerth B. (1985). Decomposition of Besov spaces. Indiana U. Math. J. 34: 777–799 · Zbl 0551.46018 · doi:10.1512/iumj.1985.34.34041
[18]Frazier, M., Jawerth, B.: The ϕ -transform and applications to distribution spaces. Lecture Notes in Math., #1302. Springer, pp. 223–246 (1988)
[19]Frazier M., Jawerth B. (1990). A Discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93: 34–170 · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[20]Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Ser., #79, American Math. Society (1991)
[21]García-Cuerva J., Rubiode Francia J.L. (1985). Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam
[22]Gomez M., Milman M. (1989). Complex interpolation of H p spaces on product domains. Ann. Mat. Pura Appl. 155: 103–115 · Zbl 0712.46040 · doi:10.1007/BF01765936
[23]Grafakos, L.: Classical and modern fourier analysis. Pearson Education (2004)
[24]Gustavsson J., Peetre J. (1977). Interpolation of Orlicz spaces. Studia Math. 60: 33–59
[25]Han Y., Müller D., Yang D. (2006). Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279: 1505–1537 · Zbl 1179.42016 · doi:10.1002/mana.200610435
[26]Han, Y., Sawyer, E.: Littlewood–Paley theory on spaces of homogeneous type and classical function spaces. Mem. Am. Math. Soc. 110(530), (1994)
[27]Han, Y., Yang, D.: New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin spaces on homogeneous type spaces and fractals. Dissertations Math. 403, pp. 102 (2002)
[28]Han Y., Yang D. (2003). Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces. Studia Math. 156: 67–97 · Zbl 1032.42025 · doi:10.4064/sm156-1-5
[29]Janson S., Jones P. (1982). Interpolation between H p spaces: the complex method. J. Funct. Anal. 48: 58–80 · Zbl 0507.46047 · doi:10.1016/0022-1236(82)90061-1
[30]Kalton N. (1984). Convexity conditions for nonlocally convex lattices. Glasgow Math. J. 25: 141–152 · Zbl 0564.46004 · doi:10.1017/S0017089500005553
[31]Kalton N. (1986). Plurisubharmonic functions on quasi-Banach spaces. Studia Math. 84: 297–324
[32]Kalton N., Mitrea M. (1998). Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350: 3903–3922 · Zbl 0902.46002 · doi:10.1090/S0002-9947-98-02008-X
[33]Mendez O., Mitrea M. (2000). The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl. 6: 503–531 · Zbl 0972.46017 · doi:10.1007/BF02511543
[34]Meyer Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge
[35]Nilsson P. (1985). Interpolation of Banach lattices. Studia Math. 82: 135–154
[36]Peetre J. (1971). Sur l’utilisation des suites inconditionellement sommables dans la théorie des espaces d’interpolation. Rend. Sem. Mat. Univ. Padova 46: 173–190
[37]Peetre J., Sparr G. (1972). Interpolation of normed abelian groups. Ann. Mat. Pura Appl. 92: 217–262 · Zbl 0237.46039 · doi:10.1007/BF02417949
[38]Pisier G. (1986). Factorization of operators through L p or L p1 and noncommutative generalizations. Math. Ann. 276: 105–136 · Zbl 0619.47016 · doi:10.1007/BF01450929
[39]Rychkov V.S. (2001). Littlewood-Paley theory and function spaces with A p loc weights. Math. Nachr. 224: 145–180 · doi:10.1002/1522-2616(200104)224:1<145::AID-MANA145>3.0.CO;2-2
[40]Stein E.M. (1993). Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton
[41]Schmeisser H.-J., Triebel H. (1987). Topics in Fourier Analysis and Function Spaces. Wiley, New York
[42]Triebel H. (1981). Complex interpolation and Fourier multipliers for the spaces B p,q s and F p,q s of Besov-Hardy-Sobolev type: the case 0<p 0<q . Math. Z. 176: 495–510 · Zbl 0449.42014 · doi:10.1007/BF01214760
[43]Triebel H. (1983). Theory of Function Spaces, Monographs in Math., #78. Birkhäuser, Basel
[44]Triebel H. (1992). Theory of Function Spaces II, Monographs in Math., #84. Birkhäuser, Basel
[45]Triebel, H.: Wavelet bases in anisotropic function spaces. Funct. Spaces Differ. Oper. Nonlinear Anal. pp. 370–387 (2004)
[46]Triebel H. (2006). Theory of Function Spaces III, Monographs in Math., #100. Birkhäuser, Basel
[47]Verbitsky I. (1992). Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through L p . Integr. Equ. Oper. Theory 15: 124–153 · Zbl 0782.47027 · doi:10.1007/BF01193770
[48]Verbitsky I. (1996). Imbedding and multiplier theorems for discrete Littlewood-Paley spaces. Pacific J. Math. 176: 529–556