zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-dimensional Banach spaces with polynomial numerical index zero. (English) Zbl 1213.46015
Summary: We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
MSC:
46B04Isometric theory of Banach spaces
46G25(Spaces of) multilinear mappings, polynomials
47A12Numerical range and numerical radius of linear operators
References:
[1]Bonsall, F. F.; Cain, B. E.; Schneider, H.: The numerical range of a continuous mapping of a normed space, Aequationes math. 2, 86-93 (1968) · Zbl 0162.20101 · doi:10.1007/BF01833492
[2]Choi, Y. S.; García, D.; Kim, S. G.; Maestre, M.: The polynomial numerical index of a Banach space, Proc. Edinburgh math. Soc. 49, 39-52 (2006) · Zbl 1122.46002 · doi:10.1017/S0013091502000810
[3]Choi, Y. S.; García, D.; Kim, S. G.; Maestre, M.: Composition, numerical range and aron-berner extension, Math. scand. 103, 97-110 (2008) · Zbl 1157.46022
[4]Choi, Y. S.; García, D.; Maestre, M.; Martín, M.: Polynomial numerical index for some complex vector-valued function spaces, Quart. J. Math. 59, 455-474 (2008) · Zbl 1165.46021 · doi:10.1093/qmath/ham054
[5]Deville, R.; Godefroy, G.; Zizler, V.: Smoothness and renormings in Banach spaces, Pitman monographs and surveys in pure and appl. Math. 64 (1993) · Zbl 0782.46019
[6]Dineen, S.: Complex analysis on infinite dimensional spaces, Springer monographs in mathematics (1999)
[7]Duncan, J.; Mcgregor, C.; Pryce, J.; White, A.: The numerical index of a normed space, J. London math. Soc. 2, 481-488 (1970) · Zbl 0197.10402
[8]Ed-Dari, E.; Khamsi, M. A.: The numerical index of the lp space, Proc. amer. Math. soc. 134, 2019-2025 (2006) · Zbl 1097.46010 · doi:10.1090/S0002-9939-05-08231-6
[9]Harris, L. A.: The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93, 1005-1019 (1971) · Zbl 0237.58010 · doi:10.2307/2373743
[10]Martín, V. Kadets.M.; Payá, R.: Recent progress and open questions on the numerical index of Banach spaces, Rev. R. Acad. cienc. Serie A. Mat. 100, 155-182 (2006) · Zbl 1111.46007
[11]S.G. Kim, The polynomial numerical index of the Lp space, preprint, 2006.
[12]Kim, S. G.; Martín, M.; Merí, J.: On the polynomial numerical index of the real spaces c0,1 and , J. math. Anal. appl. 337, 98-106 (2008) · Zbl 1125.46033 · doi:10.1016/j.jmaa.2007.03.101
[13]Lee, H. J.: Banach spaces with polynomial numerical index 1, Bull. London math. Soc. 40, 193-198 (2008) · Zbl 1153.46028 · doi:10.1112/blms/bdm113
[14]Martín, M.; Merí, J.; Rodríguez-Palacios, A.: Finite-dimensional Banach spaces with numerical index zero, Indiana univ. Math. J. 53, 1279-1289 (2004) · Zbl 1090.46005 · doi:10.1512/iumj.2004.53.2447
[15]H. Rosenthal, The Lie algebra of a Banach Space in: Banach Spaces (Columbia, Mo., 1984), Lecture Notes in Math., vol. 1166, Springer-Verlag, Berlin, 1985, pp. 129 – 157. · Zbl 0613.46016
[16]Singer, I.: Bases in Banach spaces I, Die grundlehren der mathematischen wissenschaften, band 154 (1970)
[17]Tuy, H.: Convex analysis and global optimization, (1998)