zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boyd-Wong-type common fixed point results in cone metric spaces. (English) Zbl 1213.54059
Summary: Some common fixed point results in cone metric spaces of C. Di Bari and P. Vetro [Rend. Circ. Mat. Palermo (2) 57, No. 2, 279–285 (2008; Zbl 1164.54031)] as well as P. Raja and S. M. Vaezpour [Fixed Point Theory Appl. 2008, Article ID 768294 (2008; Zbl 1148.54339)] are extended using generalized contractive-type conditions and cones which may be nonnormal. Cone metric versions of several well-known results, such as Boyd-Wong’s theorem [D. W. Boyd and J. S. W. Wong, Proc. Amer. Math. Soc. 20, 458–464 (1969; Zbl 0175.44903)], are obtained as special cases.
54H25Fixed-point and coincidence theorems in topological spaces
47H10Fixed point theorems for nonlinear operators on topological linear spaces
[1]Kantorovich, L. V.: Lineare halbeordnete räume, Matem. sb. 2, No. 44, 121-168 (1937)
[2]Kantorovich, L. V.: The majorant principle and Newton’s method, Dokl. akad. Nauk SSSR (N.S.) 76, 17-20 (1951)
[3]Vandergraft, J. S.: Newton method for convex operators in partially ordered spaces, SIAM J. Numer. anal. 4, No. 3, 406-432 (1967) · Zbl 0161.35302 · doi:10.1137/0704037
[4]Zabrei&breve, P. P.; Ko: K-metric and K-normed spaces: survey, Collect. math. 48, No. 4 – 6, 825-859 (1997)
[5]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[6]Aliprantis, C. D.; Tourky, R.: Cones and duality, graduate studies in mathematics, Cones and duality, graduate studies in mathematics 84 (2007)
[7]Baluev, A. N.: Application of semi-ordered norms in approximate solutions of nonlinear equations, Leningrad. GoS univ. Uchen. zap., ser. Mat. nauk 33, 18-27 (1985)
[8]Huang, L. G.; Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 332, No. 2, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[9]Abbas, M.; Jungck, G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. Anal. appl. 341, 416-420 (2008) · Zbl 1147.54022 · doi:10.1016/j.jmaa.2007.09.070
[10]Ilić, D.; Rakočević, V.: Common fixed points for maps on cone metric space, J. math. Anal. appl. 341, 876-882 (2008) · Zbl 1156.54023 · doi:10.1016/j.jmaa.2007.10.065
[11]Vetro, P.: Common fixed points in cone metric spaces, Rend. cir. Mat. Palermo, serie II 56, 464-468 (2007) · Zbl 1196.54086 · doi:10.1007/BF03032097
[12]Azam, A.; Arshad, M.; Beg, I.: Common fixed points of two maps in cone metric spaces, Rend. cir. Mat. Palermo 57, 433-441 (2008) · Zbl 1197.54056 · doi:10.1007/s12215-008-0032-5
[13]Jungck, G.; Radenović, S.; Radojević, S.; Rakočević, V.: Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed point theory appl. (2009) · Zbl 1190.54032 · doi:10.1155/2009/643840
[14]Kadelburg, Z.; Radenović, S.; Rakočević, V.: Remarks on quasi-contraction on a cone metric space, Appl. math. Lett. 22, 1674-1679 (2009) · Zbl 1180.54056 · doi:10.1016/j.aml.2009.06.003
[15]Azam, A.; Beg, I.; Arshad, M.: Fixed point in topological vector space-valued cone metric spaces, Fixed point theory appl. (2010) · Zbl 1197.54057 · doi:10.1155/2010/604084
[16]Altun, I.; Rakočević, V.: Ordered cone metric spaces and fixed point results, Comput. math. Appl. 60, 1145-1151 (2010) · Zbl 1201.65084 · doi:10.1016/j.camwa.2010.05.038
[17]Krein, M. G.; Rutman, M. A.: Linear operators leaving invariant cone in Banach spaces, Uspekhi mat. Nauk. (N.S) 3, No. 1, 3-95 (1948) · Zbl 0030.12902 · doi:http://mi.mathnet.ru/eng/umn/v3/i1/p3
[18]Browder, F. E.: On the convergence of successive approximations for nonlinear functional equations, Indag. math. 30, 27-35 (1968) · Zbl 0155.19401
[19]Boyd, D. W.; Wong, J. S.: On nonlinear contractions, Proc. am. Math. soc. 20, 458-464 (1969) · Zbl 0175.44903 · doi:10.2307/2035677
[20]I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.
[21]Di Bari, C.; Vetro, P.: ϕ-pairs and common fixed points in cone metric spaces, Rend. cir. Mat. Palermo 57, 279-285 (2008)
[22]Raja, P.; Vaezpour, S. M.: Some extensions of Banach’s contraction principle in complete cone metric spaces, Fixed point theory appl. (2008) · Zbl 1148.54339 · doi:10.1155/2008/768294
[23]Jungck, G.: Commuting mappings and fixed points, Am. mat. Monthly 83, 261-263 (1976) · Zbl 0321.54025 · doi:10.2307/2318216
[24]Jungck, G.: Compatible mappings and common fixed points, Int. J. Math. sci. 9, 771-779 (1986) · Zbl 0613.54029 · doi:10.1155/S0161171286000935
[25]Du, Wei-Shih: A note on cone metric fixed point theory and its equivalence, Nonlinear anal. 72, 2259-2261 (2010) · Zbl 1205.54040 · doi:10.1016/j.na.2009.10.026
[26]Amini-Harandi, A.; Fakhar, M.: Fixed point theory in cone metric spaces obtained via scalarization method, Comput. math. Appl. 59, 3529-3534 (2010) · Zbl 1197.54055 · doi:10.1016/j.camwa.2010.03.046
[27]Kadelburg, Z.; Radenović, S.; Rakočević, V.: A note on the equivalence of some metric and cone metric fixed point results, Appl. math. Lett. 24, 370-374 (2011) · Zbl 1213.54067 · doi:10.1016/j.aml.2010.10.030
[28]Rhoades, B. E.: A comparison of various definitions of contractive mappings, Trans. am. Math. soc. 336, 257-290 (1977) · Zbl 0365.54023 · doi:10.2307/1997954