zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Similarity solutions of a MHD boundary-layer flow past a continuous moving surface. (English) Zbl 1213.76234
Summary: This note deals with a theoretical and numerical analysis of multiple similarity solutions of the two-dimensional MHD boundary-layer flow over a permeable surface, with a power law stretching velocity, in the presence of a magnetic field B applied normally to the surface. We have taken the free stream velocity to vary as x m , where x is the coordinate along the plate measured from the leading edge and m is a constant. The magnetic field B is assumed to be proportional to x m-1 2 . The problem depends on the power law exponent and the magnetic parameter M or the Stewart number. It is shown, under certain circumstance, that the problem has an infinite number of solutions.
MSC:
76W05Magnetohydrodynamics and electrohydrodynamics
76D10Boundary-layer theory, separation and reattachment, etc. (incompressible viscous fluids)
76M55Dimensional analysis and similarity (fluid mechanics)