zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bianchi type-III bulk viscous and barotropic perfect fluid cosmological models in Lyra’s geometry. (English) Zbl 1213.83079
Summary: We have investigated Bianchi type III bulk viscous and barotropic perfect fluid cosmological models in the frame work of Lyra’s geometry. To get deterministic models of universe, we have assumed the three conditions: (i) shear scalar (σ) is proportional to the expansion (θ). This leads to B=C n , where B and C are metric potentials. (ii) In presence of viscous fluid, the coefficient of viscosity of dissipative fluid is a power function of mass density ξ=ξ 0 ρ m , where ξ 0 and m are constant and (iii) in absence of viscosity, a proportionality relation between pressure and energy density of barotropic perfect fluid p=αρ, where α is a proportionality constant. In all the cases, we observed that the displacement vector β is large at beginning of the universe and reduces fast during its evolution so that its nature coincide with the behavior of cosmological constant Λ.
MSC:
83C55Macroscopic interaction of the gravitational field with matter (general relativity)
83D05Relativistic gravitational theories other than Einstein’s
83F05Relativistic cosmology
83C15Closed form solutions of equations in general relativity
References:
[1]Weyl, H.: Sitz. Preuss Akad. Wiss., p. 465 (1918)
[2]Lyra, G.: Math. Z. 54, 52 (1951) · Zbl 0042.15902 · doi:10.1007/BF01175135
[3]Sen, D.K.: Z. Phys. 149, 311 (1957) · doi:10.1007/BF01333146
[4]Sen, D.K., Dunn, K.A.: J. Math. Phys. 12, 578 (1971) · Zbl 0211.24804 · doi:10.1063/1.1665623
[5]Halford, W.D.: Aust. J. Phys. 23, 863 (1970) · doi:10.1071/PH700863
[6]Halford, W.D.: J. Math. Phys. 13, 1699 (1972) · doi:10.1063/1.1665894
[7]Bhamra, K.S.: Aust. J. Phys. 27, 541 (1974) · doi:10.1071/PH740541
[8]Karade, T.M., Borikar, S.M.: Gen. Relativ. Gravit. 9, 431 (1978) · doi:10.1007/BF00759843
[9]Kalyanshetti, S.B., Wagmode, S.M.: Gen. Relativ. Gravit. 14, 823 (1982) · Zbl 0494.53027 · doi:10.1007/BF00756799
[10]Reddy, D.R.K., Innaiah, R.: Astrophys. Space Sci. 123, 49 (1986) · Zbl 0592.76199 · doi:10.1007/BF00649122
[11]Reddy, D.R.K., Wenkateswar, R.: Astrophys. Space Sci. 136, 183 (1987) · doi:10.1007/BF00661265
[12]Soleng, H.H.: Gen. Relativ. Gravit. 19, 1213 (1987) · doi:10.1007/BF00759100
[13]Singh, T., Singh, G.P.: J. Math. Phys. 32, 2456 (1991) · Zbl 0736.76084 · doi:10.1063/1.529495
[14]Singh, T., Singh, G.P.: Nuovo Cim. 106, 617 (1991) · doi:10.1007/BF02813228
[15]Singh, T., Singh, G.P.: Int. J. Theor. Phys. 31, 1433 (1992) · doi:10.1007/BF00673976
[16]Rahaman, F.: Int. J. Mod. Phys. D 10, 579 (2001) · Zbl 1155.83318 · doi:10.1142/S0218271801000913
[17]Pradhan, A.: J. Math. Phys. 50(2), 22501 (2009) · Zbl 1202.83029 · doi:10.1063/1.3075571
[18]Ram, S., Singh, P.: Int. J. Theor. Phys. 31, 2095 (1992) · doi:10.1007/BF00679969
[19]Bali, R., Chandnani, N.K.: J. Math. Phys. 49, 032502 (2008) · Zbl 1153.85310 · doi:10.1063/1.2898477
[20]Singh, J.P., Tiwari, R.K.: Pramana J. Phys. 70, 565 (2008) · doi:10.1007/s12043-008-0019-y
[21]Bali, R., Chandnani, N.K.: Int. J. Theor. Phys. 48, 3101 (2009) · Zbl 1184.83044 · doi:10.1007/s10773-009-0106-y
[22]Yadav, V.K., Yadav, L., Yadav, A.K.: Rom. J. Phys. 55(7–8), 862 (2010)
[23]Yadav, V.K., Yadav, L., Yadav, A.K.: Fizika B (Zagreb) 19, 29 (2010)
[24]Padmanabhan, T., Chitre, S.M.: Phys. Lett. A 120, 433 (1987) · doi:10.1016/0375-9601(87)90104-6
[25]Johri, V.B., Sudharshan, R.: Phys. Lett. A 132, 316 (1988) · doi:10.1016/0375-9601(88)90860-2
[26]Maartens, R.: Class. Quantum Gravity 12, 1455 (1995) · Zbl 0825.83004 · doi:10.1088/0264-9381/12/6/011
[27]Misner, C.W.: Nature 214, 40 (1967) · doi:10.1038/214040a0
[28]Misner, C.W.: Astrophys. J. 151, 431 (1968) · doi:10.1086/149448
[29]Wienberg, S.: Astrophys. J. 168, 175 (1971) · doi:10.1086/151073
[30]Murphy, J.L.: Phys. Rev. D 8, 4231 (1973) · doi:10.1103/PhysRevD.8.4231
[31]Nightingale, J.P.: Astrophys. J. 185, 105 (1973) · doi:10.1086/152400
[32]Heller, M., Klimek, Z.: Astrophys. Space Sci. 33, 37 (1975)
[33]Bali, R., Pradhan, A.: Chin. Phys. Lett. 24, 585 (2007) · doi:10.1088/0256-307X/24/2/079
[34]Singh, C.P., Kumar, S.: Int. J. Theor. Phys. 48, 925 (2009) · Zbl 1171.83384 · doi:10.1007/s10773-008-9865-0
[35]Singh, G.P., Kale, A.Y.: Int. J. Theor. Phys. 48, 3158 (2009) · Zbl 1187.83091 · doi:10.1007/s10773-009-0116-9
[36]Bali, R., Chandnani, N.K.: Int. J. Theor. Phys. 48, 1523 (2009) · Zbl 1171.83342 · doi:10.1007/s10773-009-0002-5
[37]Yadav, M.K., Pradhan, A., Singh, S.K.: Astrophys. Space Sci. 311, 423 (2007) · Zbl 1132.83320 · doi:10.1007/s10509-007-9556-y
[38]Bali, R., Tinker, S., Singh, P.: Int. J. Theor. Phys. 49, 1431 (2010) · Zbl 1200.83125 · doi:10.1007/s10773-010-0322-5
[39]Bali, R., Chandnani, N.K.: Astrophys. Space Sci. 318, 255 (2008) · doi:10.1007/s10509-008-9931-3
[40]Thorne, K.S.: Astrophys. J. 148, 51 (1967) · doi:10.1086/149127
[41]Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 443 (1966) · doi:10.1063/1.1704952
[42]Kristian, J., Sachs, R.K.: Astrophys. J. 143, 379 (1966) · doi:10.1086/148522
[43]Santos, N.O., Dias, R.S., Banerjee, A.: J. Math. Phys. 26, 878 (1985) · Zbl 0562.76124 · doi:10.1063/1.526582
[44]Zimdahl, W.: Phys. Rev. D 53, 5483 (1996) · doi:10.1103/PhysRevD.53.5483
[45]Pavon, D., Bafaluy, J., Jou, D.: Class. Quantum Gravity 8, 357 (1991) · doi:10.1088/0264-9381/8/2/014
[46]Murphy, G.L.: Phys. Rev. D 8, 4231 (1973) · doi:10.1103/PhysRevD.8.4231
[47]Wienberg, S.: Gravitation and Cosmology. Wiley, New York (1972)
[48]Belinskii, U.A., Kalatnikov, I.M.: Sov. Phys. JETP 42, 205 (1976)
[49]Perlmutter, S., et al.: Astrophys. J. 43, 565 (1997) · doi:10.1086/304265
[50]Perlmutter, S., et al.: Nature (Landon) 391, 51 (1998) · doi:10.1038/34124
[51]Riess, A.G.: Astron. J. 116, 1009 (1998) · doi:10.1086/300499
[52]Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) · doi:10.1086/307221
[53]Ellis, G.F.R.: General Relativity and Cosmology, p. 117. Academic Press, San Diego (1971) (edited by R.K. Sachs)