zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite-time gain-scheduled control on stochastic bioreactor systems with partially known transition jump rates. (English) Zbl 1213.93162
Summary: In this paper, an observer-based finite-time continuous gain-scheduled control is designed for a class of stochastic bioreactor systems with partially known jump rates. By using gradient linearization approach, the nonlinear stochastic systems are described by a series of linear jump models at some selected working points, then based on stochastic Lyapunov-Krasovskii functional approach, a new robust stochastic finite-time stabilizable criterion is derived to ensure robust finite-time stabilization of the each jump linear system by means of linear matrix inequalities. This method is then extended to provide observer-based finite-time state feedback H controllers for such linear jump systems. Lastly, continuous gain-scheduled approach is employed to design observer-based continuous H controllers for the whole bioreactor jump systems. Simulation examples show the effectiveness and potential of the developed techniques.
93C95Applications of control theory
93B36H -control
[1]M.D.S. Aliyu, E.K. Bonkas, Control for Markovian jump nonlinear systems, in 37th IEEE Conf. Decision and Control, Tampa, FL (1998), pp. 766–771
[2]F. Amato, M. Ariola, Finite-time control of discrete-time linear systems. IEEE Trans. Autom. Control 50(5), 724–729 (2005) · doi:10.1109/TAC.2005.847042
[3]F. Amato, M. Ariola, C.T. Abdallah, Dynamic output feedback finite-time control of LIT systems subject to parametric uncertainties and disturbances, in Proceedings of the European Control Conference (Springer, Berlin, 1999), pp. 1176–1180
[4]F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[5]F. Amato, M. Ariola, C. Cosentino, Finite-time control via output feedback: a general approach, in Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii, USA (2003), pp. 350–355
[6]F. Amato, M. Ariola, C. Cosentino, Finite-time stabilization via dynamic output feedback. Automatica 42(2), 337–342 (2006) · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007
[7]W. Assawinchaichote, S.K. Nguang, P. Shi, Robust fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps: an LMI approach. Inf. Sci. 177(1), 1699–1714 (2007) · Zbl 1113.93078 · doi:10.1016/j.ins.2006.10.006
[8]H.C. Byung, C.N. Hee, Design of stability and performance robust fuzzy logic gain scheduler for nuclear steam generators. IEEE Trans. Nucl. Sci. 44(3), 1431–1441 (1997) · doi:10.1109/23.588589
[9]W.H. Chen, J.X. Xu, Z.H. Guan, Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays. IEEE Trans. Autom. Control 48(12), 22701–2276 (2003)
[10]H.L. Chirl, H.S. Myoung, J.C. Myung, A design of gain-scheduled control for a linear parameter varying system: an application to flight control. Control Eng. Pract. 9(1), 11–21 (2001) · doi:10.1016/S0967-0661(00)00090-3
[11]M. Galluzzo, B. Cosenza, A. Matharu, Control of a nonlinear continuous bioreactor with bifurcation by a type-2 fuzzy logic controller. Comput. Chem. Eng. 32(12), 2986–2993 (2008) · doi:10.1016/j.compchemeng.2008.03.010
[12]L. Hu, P. Shi, P. Frank, Robust sampled-data control for Markovian jump linear systems. Automatica 42(11), 2025–2030 (2006) · Zbl 1112.93057 · doi:10.1016/j.automatica.2006.05.029
[13]T.A. Johansen, K.J. Hunt, I. Petersen, Gain-scheduled control of a solar power plant. Control Eng. Pract. 8(9), 1011–1022 (2000) · doi:10.1016/S0967-0661(00)00043-5
[14]S.H. Li, Z. Wang, S.M. Fei, Finite-time control of a Bioreactor system using terminal sliding mode. Int. J. Innov. Comput. Inf. Control 5(10(B)), 3495–3504 (2009)
[15]F. Liu, Y. Cai, Passive analysis and synthesis of Markovian jump systems with norm bounded uncertainty and unknown delay. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 13, 157–166 (2006)
[16]X. Luan, F. Liu, P. Shi, Finite-time filtering for nonlinear stochastic systems with partially known transition jump rates. IET Control Theory Appl. 4(5), 735–745 (2010) · doi:10.1049/iet-cta.2009.0014
[17]M. Mahmoud, P. Shi, Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Trans. Circuits Syst. 50(1), 98–105 (2003) · doi:10.1109/TCSI.2002.807504
[18]X. Mao, Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 79(1), 45–67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[19]C. Marcelo, H. Stanislaw, Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Fuzzy Syst. 7(2), 133–142 (1999) · doi:10.1109/91.755395
[20]S.K. Nguang, W. Assawinchaichote, P. Shi, Robust H-infinity control design for fuzzy singularly perturbed systems with Markovian jumps: an LMI approach. IET Control Theory Appl. 1(4), 893–908 (2007) · doi:10.1049/iet-cta:20060369
[21]S. Ramaswamy, T.J. Cutright, H.K. Qammar, Control of a continuous bioreactor using model predictive control. Process. Biochemistry 40(8), 2763–2770 (2005)
[22]M.A. Rami, E.L. Ghaoui, Robust stabilization of jump linear systems using linear matrix inequalities, in: Proceedings of IFAC Symposium on Robust Control Design, Rio de Janeiro, Brazil (1994), pp. 148–151
[23]P. Shi, E.K. Boukas, R. Agarwal, Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters. IEEE Trans. Autom. Control 44(8), 1592–1597 (1999) · Zbl 0986.93066 · doi:10.1109/9.780431
[24]P. Shi, Y. Xia, G. Liu, D. Rees, On designing of sliding mode control for stochastic jump systems. IEEE Trans. Autom. Control 51(1), 97–103 (2006) · doi:10.1109/TAC.2005.861716
[25]H. Sira-Ramirez, M.I. Angulo-Nunez, Passivity-based control of nonlinear chemical processes. Int. J. Control 68(5), 971–996 (1997) · Zbl 0890.93047 · doi:10.1080/002071797223163
[26]J.L. Wang, J.M. Wang, W. Yuan, P. Shi, Gain-scheduled guaranteed cost control of LPV systems with time-varying state and input delays. Int. J. Innov. Comput. Inf. Control 5(10(B)), 3377–3390 (2009)
[27]Z. Wang, S.H. Li, S.M. Fei, Finite-time tracking control of bank-to-turn missiles using terminal sliding mode. ICIC Express Lett. 3(4(B)), 1373–1380 (2009)
[28]L. Weiss, E.F. Infante, Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 2(2), 54–59 (1967) · doi:10.1109/TAC.1967.1098483
[29]L. Wu, P. Shi, H. Gao, C. Wang, Robust H-infinity filtering for 2-D Markovian jump systems. Automatica 44(7), 1849–1858 (2008) · Zbl 1149.93346 · doi:10.1016/j.automatica.2007.10.027
[30]L. Zhang, H-infinity estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica 45(11), 2570–2576 (2009) · Zbl 1180.93100 · doi:10.1016/j.automatica.2009.07.004
[31]W. Zhang, X.Y. An, Finite-time control of linear stochastic systems. International Journal of Innovative Computing. Inf. Control 4(3), 689–696 (2008)
[32]L. Zhang, P. Shi, Stability, l 2-gain and asynchronous H-infinity control of discrete-time switched systems with average dwell time. IEEE Trans. Autom. Control 54(9), 2193–2200 (2009) · doi:10.1109/TAC.2008.2010968
[33]L. Zhang, C. Wang, L. Chen, Stability and stabilization of a class of multimode linear discrete-time systems with polytopic uncertainties. IEEE Trans. Ind. Electron. 56(9), 3684–3692 (2009) · doi:10.1109/TIE.2009.2026375
[34]L. Zhang, K. Boukas, P. Shi, H-infinity model reduction for discrete-time Markov jump linear systems with partially known transition. Int. J. Control 82(2), 243–351 (2009)