zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Enclosed Laplacian Operator of Nonlinear Anisotropic Diffusion to preserve singularities and delete isolated points in image smoothing. (English) Zbl 1213.94019
Summary: Existing Nonlinear Anisotropic Diffusion (NAD) methods in image smoothing cannot obtain satisfied results near singularities and isolated points because of the discretization errors. In this paper, we propose a new scheme, named Enclosed Laplacian Operator of Nonlinear Anisotropic Diffusion (ELONAD), which allows us to provide a unified framework for points in flat regions, edge points and corners, even can delete isolated points and spurs. ELONAD extends two diffusion directions of classical NAD to eight or more enclosed directions. Thus it not only performs NAD according to modules of enclosed directions which can reduce the influence of traction errors greatly, but also distinguishes isolated points and small spurs from corners which must be preserved. Smoothing results for test patterns and real images using different discretization schemes are also given to test and verify our discussions.
MSC:
94A08Image processing (compression, reconstruction, etc.)