zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust FIR equalization for time-varying communication channels with intermittent observations via an LMI approach. (English) Zbl 1213.94054
Summary: The optimal design of finite impulse response (FIR) filters for equalization/deconvolution is investigated in this paper. Two practical yet challenging constraints are incorporated into the modeling of the equalization system: (1) The parameters of the communication channel model are arbitrarily time-varying within a polytope with finite known vertices; (2) at the received end, the received signal is usually intermittent due to network-induced packet dropouts which are modeled by a stochastic Bernoulli distribution. Under the stochastic theory framework, a robust design method for the FIR equalizer is proposed such that the equalization system can achieve the prescribed energy-to-peak performance even it is subject to uncertainties, external noise, and data missing. Sufficient conditions for the existence of the equalizer are derived by a set of linear matrix inequalities (LMIs). An illustrative design example demonstrates the design procedure and the effectiveness of the proposed method.
94A12Signal theory (characterization, reconstruction, filtering, etc.)
[1]Wang, S.; Xie, L.; Zhang, C.: H2 optimal inverse of periodic FIR digital filters, IEEE trans. Signal process. 48, No. 9, 2696-2700 (2000)
[2]Erdogan, A. T.; Hassibi, B.; Kailath, T.: FIR H equalization, Signal process. 81, No. 5, 907-917 (2001) · Zbl 1098.94539 · doi:10.1016/S0165-1684(00)00253-X
[3]Shi, Y.; Chen, T.: Optimal design of multi-channel transmultiplexers with stopband energy and passband magnitude constraints, IEEE trans. Circuits syst. II 50, No. 9, 659-662 (2003)
[4]Venkataramani, R.; Bresler, Y.: Filter design for MIMO sampling and reconstruction, IEEE trans. Signal process. 51, No. 12, 3164-3176 (2003)
[5]Dumitrescu, B.: Bounded real lemma for FIR MIMO systems, IEEE signal process. Lett. 12, No. 7, 496-499 (2005)
[6]Shi, Y.; Ding, F.; Chen, T.: Multirate crosstalk identification in xdsl systems, IEEE trans. Commun. 54, No. 10, 1878-1886 (2006)
[7]Guo, Y.; Levy, B. C.: Robust MSE equalizer design for MIMO communication systems in the presence of model uncertainties, IEEE trans. Signal process. 54, No. 5, 1840-1852 (2006)
[8]Su, T. -J.; Peng, H. -W.: Robust finite impulse response equalisation for time-delay communication channels: linear matrix inequality approach, IET control theory appl. 1, No. 1, 226-232 (2007)
[9]Gao, H.; Lam, J.; Wang, C.: Robust energy-to-peak filter design for stochastic time-delay systems, Syst. contr. Lett. 55, No. 2, 101-111 (2006) · Zbl 1129.93538 · doi:10.1016/j.sysconle.2005.05.005
[10]Wu, L.; Wang, Z.; Gao, H.; Wang, C.: H and l2-l filtering for two-dimensional linear parameter-varying systems, Int. J. Robust nonlinear control 17, No. 12, 1129-1154 (2007)
[11]Zhang, L.; Shi, P.; Boukas, E. K.; Wang, C.: Robust l2-l filtering for switched linear discrete time-delay systems with polytopic uncertainties, IET control theory appl. 1, No. 3, 722-730 (2007)
[12]Zhang, J.; Xia, Y.; Shi, P.: Parameter-dependent robust H filtering for uncertain discrete-time systems, Automatica 45, No. 2, 560-565 (2009) · Zbl 1158.93406 · doi:10.1016/j.automatica.2008.09.005
[13]Gao, H.; Wu, J.; Shi, P.: Robust sampled-data H control with stochastic sampling, Automatica 45, No. 7, 1729-1736 (2009) · Zbl 1184.93039 · doi:10.1016/j.automatica.2009.03.004
[14]Zhang, H.; Mehr, A. Saadat; Shi, Y.: Improved robust energy-to-peak filtering for uncertain linear systems, Signal process. 90, No. 9, 2667-2675 (2010) · Zbl 1194.94159 · doi:10.1016/j.sigpro.2010.03.011
[15]Zhou, H.; Xie, L.; Zhang, C.: A direct approach to H2 optimal deconvolution of periodic digital channels, IEEE trans. Signal process. 50, No. 7, 1685-1698 (2002)
[16]Park, P.; Yun, S. W.: Induced ‐norm FIR filter for recovering MPSK-type modulus signals, Signal process. 88, No. 11, 2731-2737 (2008)
[17]Grigoriadis, K. M.; Watson, J. T.: Reduced-order H and L2-L filtering via linear matrix inequalities, IEEE trans. Aerospace electronic syst. 33, No. 4, 1326-1338 (1997)
[18]Palhares, R. M.; Peres, P. L. D.: Robust filtering with guaranteed energy-to-peak performance-an LMI approach, Automatica 36, No. 6, 851-858 (2000) · Zbl 0953.93067 · doi:10.1016/S0005-1098(99)00211-3
[19]Gao, H.; Wang, C.: Robust energy-to-peak filtering with improved LMI representation, IEE proc.-vis. Image signal process. 150, No. 2, 82-89 (2003)
[20]Gong, C.; Su, B.: Robust L2-L filtering of convex polyhedral uncertain time-delay fuzzy systems, Int. J. Innovative comput. Inf. control 4, No. 4, 793-802 (2008)
[21]Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust finite-horizon filtering for stochastic systems with missing measurements, IEEE signal process. Lett. 12, No. 6, 437-440 (2005)
[22]Hounkpevi, F. O.; Yaz, E. E.: Robust minimum variance linear state estimators for multiple sensors with different failure rates, Automatica 43, No. 7, 1274-1280 (2007) · Zbl 1123.93085 · doi:10.1016/j.automatica.2006.12.025
[23]Gao, H.; Zhao, Y.; Lam, J.; Chen, K.: H fuzzy filtering of nonlinear systems with intermittent measurements, IEEE trans. Fuzzy syst. 17, No. 2, 291-300 (2009)
[24]Zhao, Y.; Lam, J.; Gao, H.: Fault detection for fuzzy systems with intermittent measurements, IEEE trans. Fuzzy syst. 17, No. 2, 398-410 (2009)
[25]Gao, H.; Chen, T.; Wang, L.: Robust fault detection with missing measurements, Int. J. Control 81, No. 5, 804-819 (2008) · Zbl 1152.93346 · doi:10.1080/00207170701684823