zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. (English) Zbl 1214.34009
Sufficient conditions for the existence and uniqueness of a solution to an anti-periodic boundary value problem of nonlinear impulsive differential equations of fractional order α(2,3] are presented. The main tools are some well-known fixed point theorems. Two examples are given to demonstrate the main results.
MSC:
34A08Fractional differential equations
34B37Boundary value problems for ODE with impulses
47N20Applications of operator theory to differential and integral equations
References:
[1]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives, theory and applications, (1993) · Zbl 0818.26003
[2]Podlubny, I.: Fractional differential equations, (1999)
[3]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[4], Advances in fractional calculus: theoretical developments and applications in physics and engineering (2007)
[5]Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations, Nonlinear anal. 69, No. 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[6]Lakshmikantham, V.; Leela, S.; Devi, J. Vasundhara: Theory of fractional dynamic systems, (2009)
[7]Lazarević, M. P.; Spasić, A. M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math. comput. Modelling 49, 475-481 (2009) · Zbl 1165.34408 · doi:10.1016/j.mcm.2008.09.011
[8]Bai, Z. B.; Lü, H. S.: Positive solutions of boundary value problems of nonlinear fractional differential equation, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[9]Agarwal, R. P.; Belmekki, M.; Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative, Adv. differential equations (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728
[10]Benchohra, M.; Hamani, S.; Ntouyas, S. K.: Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear anal. 71, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[11]Darwish, M. A.; Ntouyas, S. K.: On initial and boundary value problems for fractional order mixed type functional differential inclusions, Comput. math. Appl. 59, 1253-1265 (2010) · Zbl 1189.34029 · doi:10.1016/j.camwa.2009.05.006
[12]Balachandran, K.; Trujillo, J. J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear anal. 72, 4587-4593 (2010) · Zbl 1196.34007 · doi:10.1016/j.na.2010.02.035
[13]Mcrae, F. A.: Monotone iterative technique and existence results for fractional differential equations, Nonlinear anal. (2009)
[14]Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R.: Existence of periodic solution for a nonlinear fractional differential equation, Bound. value probl. 2009 (2009) · Zbl 1181.34006 · doi:10.1155/2009/324561
[15]Chang, Y. K.; Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. Modelling 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[16]Ahmad, B.; Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. Appl. 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[17]Ahmad, B.; Nieto, J. J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. value probl. 2009 (2009)
[18]Zhang, S. Q.: Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. math. Appl. 59, 1300-1309 (2010) · Zbl 1189.34050 · doi:10.1016/j.camwa.2009.06.034
[19]Nakao, M.: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity, J. math. Anal. appl. 204, 754-764 (1996) · Zbl 0873.35051 · doi:10.1006/jmaa.1996.0465
[20]Chen, H. L.: Antiperiodic wavelets, J. comput. Math. 14, 32-39 (1996) · Zbl 0839.42014
[21]Souplet, P.: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations, Nonlinear anal. 32, 279-286 (1998) · Zbl 0892.35078 · doi:10.1016/S0362-546X(97)00477-X
[22]Delvos, F. J.; Knoche, L.: Lacunary interpolation by antiperiodic trigonometric polynomials, Bit 39, 439-450 (1999) · Zbl 0931.42003 · doi:10.1023/A:1022314518264
[23]Cabada, A.; Vivero, D. R.: Existence and uniqueness of solutions of higher-order antiperiodic dynamic equations, Adv. differential equations 4, 291-310 (2004) · Zbl 1083.39017 · doi:10.1155/S1687183904310022
[24]Agarwal, R. P.; Cabada, A.; Otero-Espinar, V.; Dontha, S.: Existence and uniqueness of solutions for anti-periodic difference equations, Arch. inequal. Appl. 2, 397-411 (2004) · Zbl 1087.39001
[25]Wang, Y.; Shi, Y. M.: Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions, J. math. Anal. appl. 309, 56-69 (2005) · Zbl 1083.39019 · doi:10.1016/j.jmaa.2004.12.010
[26]Chen, Y.; Nieto, J. J.; O’regan, D.: Antiperiodic solutions for fully nonlinear first-order differential equations, Math. comput. Modelling 46, No. 9–10, 1183-1190 (2007) · Zbl 1142.34313 · doi:10.1016/j.mcm.2006.12.006
[27]Ahmad, B.; Nieto, J. J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear anal. 69, 3291-3298 (2008) · Zbl 1158.34049 · doi:10.1016/j.na.2007.09.018
[28]Shao, J.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays, Phys. lett. A 372, 5011-5016 (2008) · Zbl 1221.92007 · doi:10.1016/j.physleta.2008.05.064
[29]Liu, B.: An anti-periodic lasalle oscillation theorem for a class of functional differential equations, J. comput. Appl. math. 223, 1081-1086 (2009) · Zbl 1166.34323 · doi:10.1016/j.cam.2008.03.040
[30]Ahmad, B.; Otero-Espinar, V.: Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, Bound. value probl. (2009) · Zbl 1172.34004 · doi:10.1155/2009/625347
[31]Ahmad, B.; Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory, Topol. methods nonlinear anal. 35, 295-304 (2010)
[32]Ahmad, B.: Existence of solutions for fractional differential equations of order q(2,3] with anti-periodic boundary conditions, J. appl. Math. comput. 34, 385-391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4
[33]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[34]Rogovchenko, Y. V.: Impulsive evolution systems: Main results and new trends, Dyn. contin. Discrete impuls. Syst. 3, 57-88 (1997) · Zbl 0879.34014
[35]Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[36]Zavalishchin, S. T.; Sesekin, A. N.: Dynamic impulse systems. Theory and applications, (1997)
[37]Sun, J. X.: Nonlinear functional analysis and its application, (2008)
[38]Wang, G.; Zhang, L.; Song, G.: Extremal solutions for the first order impulsive functional differential equations with upper and lower solutions in reversed order, J. comput. Appl. math. (2010)
[39]Agarwal, R. P.; Benchohra, M.; Slimani, B. A.: Existence results for differential equations with fractional order and impulses, Mem. differential equations math. Phys. 44, 1-21 (2008) · Zbl 1178.26006
[40]Ahmad, B.; Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear anal. Hybrid syst. 3, 251-258 (2009) · Zbl 1193.34056 · doi:10.1016/j.nahs.2009.01.008
[41]Ahmad, B.; Sivasundaram, S.: Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear anal. Hybrid syst. 4, 134-141 (2010) · Zbl 1187.34038 · doi:10.1016/j.nahs.2009.09.002
[42]Mophou, G. M.: Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear anal. 72, 1604-1615 (2010) · Zbl 1187.34108 · doi:10.1016/j.na.2009.08.046
[43]Chang, Y. K.; Nieto, J. J.: Existence of solutions for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators, Numer. funct. Anal. optim. 30, 227-244 (2009) · Zbl 1176.34096 · doi:10.1080/01630560902841146 · doi:http://www.informaworld.com/smpp/./content~db=all~content=a910367252
[44]Abbas, S.; Benchohra, M.: Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear anal. Hybrid syst. 4, No. 3, 406-413 (2010) · Zbl 1202.35340 · doi:10.1016/j.nahs.2009.10.004
[45]Chang, Y. -K.; Nieto, Juan J.; Zhao, Zhi-Han: Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear anal. Hybrid syst. 4, No. 3, 593-599 (2010) · Zbl 1209.34093 · doi:10.1016/j.nahs.2010.03.006
[46]R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (in press). · Zbl 1226.26005 · doi:http://online.watsci.org/abstract_pdf/2011v18/v18n4a-pdf/3.pdf
[47]Zhang, X.; Huang, X.; Liu, Z.: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear anal. Hybrid syst. (2010) · Zbl 1207.34101 · doi:10.1016/j.nahs.2010.05.007
[48]Tian, Y.; Bai, Z.: Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. math. Appl. (2010)