zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. (English) Zbl 1214.34042
Authors’ abstract: An adaptive backstepping design is proposed for the full state hybrid projective synchronization between two different chaotic systems with fully unknown parameters. Based on the design, the synchronization of two uncertain chaotic systems is realized only by using one controller, and the unknown parameters are identified through the corresponding parameter update laws. The uncertain Genesio-Tesi chaotic system and Lorenz system are chosen as examples for detailed description of the method. Finally, some numerical simulations are given to illustrate the effectiveness of the proposed method.
34H10Chaos control (ODE)
34C28Complex behavior, chaotic systems (ODE)
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990)
[2]Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits, IEEE trans. Circ. syst. I 38, 453-456 (1991)
[3]Agiza, H. N.: Chaos synchronization of Lü dynamical system, Nonlinear anal. 58, 11-20 (2004) · Zbl 1057.34042 · doi:10.1016/j.na.2004.04.002
[4]Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H.: Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE trans. Circ. syst. I 40, 626-633 (1993)
[5]Yu, Y. G.; Zhang, S. C.: Adaptive backstepping synchronization of uncertain chaotic system, Chaos solitons fractals 21, 643-649 (2004) · Zbl 1062.34053 · doi:10.1016/j.chaos.2003.12.067
[6]Li, C. D.; Liao, X. F.; Zhang, R.: Impulsive synchronization of nonlinear coupled chaotic systems, Phys. lett. A 328, 47-50 (2004) · Zbl 1134.37367 · doi:10.1016/j.physleta.2004.05.065
[7]Junge, L.; Parlitz, U.: Phase synchronization of coupled Ginzburg–Landau equations, Phys. rev. E. 62, 320-324 (2000)
[8]Li, C. G.; Chen, G. R.: Phase synchronization in small-world networks of chaotic oscillators, Physica A 341, 73-79 (2004)
[9]Hu, J.; Chen, S. H.; Chen, L.: Adaptive control for anti-synchronization of Chua’s chaotic system, Phys. lett. A 339, 455-460 (2005) · Zbl 1145.93366 · doi:10.1016/j.physleta.2005.04.002
[10]Femat, R.; Solis-Perales, G.: On the chaos synchronization phenomena, Phys. lett. A 262, 50-60 (1999) · Zbl 0936.37010 · doi:10.1016/S0375-9601(99)00667-2
[11]Kacarev, L.; Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys. rev. Lett. 76, 1816-1819 (1996)
[12]Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A.: Lag synchronization in time-delayed systems, Phys. lett. A 292, 320-324 (2002) · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[13]Yan, Z. Y.: Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems: a symbolic–numeric computation approach, Chaos 15, 023902 (2005) · Zbl 1080.93008 · doi:10.1063/1.1876612
[14]Mainieri, R.; Rehacek, J.: Projective synchronization in the three-dimensional chaotic systems, Phys. rev. Lett. 82, 3042-3045 (1999)
[15]Xu, D. L.; Chee, C. Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. rev. E. 66, 046218 (2002)
[16]Wen, G. L.; Xu, D. L.: Observed-based control for full state projective synchronization of a general class of chaotic maps in any dimension, Phys. lett. A 333, 420-425 (2004) · Zbl 1123.37326 · doi:10.1016/j.physleta.2004.10.072
[17]Hu, M. F.; Xu, Z. Y.: Adaptive feedback controller for projective synchronization, Nonlinear anal.: RWA 9, 1253-1260 (2008) · Zbl 1144.93364 · doi:10.1016/j.nonrwa.2007.03.005
[18]Hu, M. F.; Xu, Z. Y.; Yang, Y. Q.: Projective cluster synchronization in drive-response dynamical networks, Physica A 387, 3759-3768 (2008)
[19]Hu, M. F.; Yang, Y. Q.; Xu, Z. Y.: Impulsive control of projective synchronization in chaotic systems, Phys. lett. A 372, 3228-3233 (2008) · Zbl 1220.34079 · doi:10.1016/j.physleta.2008.01.054
[20]Li, G. H.: Generalized projective synchronization between Lorenz system and Chen’s system, Chaos solitons fractals 32, 1454-1458 (2007) · Zbl 1129.37013 · doi:10.1016/j.chaos.2005.11.073
[21]Li, G. H.: Modified projective synchronization of chaotic system, Chaos solitons fractals 32, 1786-1790 (2007) · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[22]Tang, Y.; Fang, J. A.: General method for modified projective synchronization of hyperchaotic systems with known or unknown parameters, Phys. lett. A 32, 1816-1826 (2008) · Zbl 1220.37027 · doi:10.1016/j.physleta.2007.10.043
[23]Park, J. H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J. comput. Appl. math. 213, 288-293 (2008) · Zbl 1137.93035 · doi:10.1016/j.cam.2006.12.003
[24]Ho, M.; Hung, Y.; Liu, Z.; Jiang, M.: Reduced-order synchronization of chaotic systems with parameters unknown, Phys. lett. A 348, 251-259 (2006)
[25]Hu, M. F.; Xu, Z. Y.; Zhang, R.; Hu, A. H.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems, Phys. lett. A 361, 231-237 (2007) · Zbl 1170.93365 · doi:10.1016/j.physleta.2006.08.092
[26]Hu, M. F.; Xu, Z. Y.; Zhang, R.; Hu, A. H.: Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order, Phys. lett. A 365, 315-327 (2007)
[27]Hu, M. F.; Yang, Y. Q.; Xu, Z. Y.; Guo, L. X.: Hybrid projective synchronization in a chaotic complex nonlinear system, Math. comput. Simul. 79, 449-457 (2008) · Zbl 1151.93017 · doi:10.1016/j.matcom.2008.01.047
[28]Li, R. H.: A special full-state hybrid projective synchronization in symmetrical chaotic systems, Appl. math. Comput. 200, 321-329 (2008) · Zbl 1152.65117 · doi:10.1016/j.amc.2007.11.010
[29]Jia, Q.: Projective synchronization of a new hyperchaotic Lorenz system, Phys. lett. A 370, 40-45 (2007) · Zbl 1209.93105 · doi:10.1016/j.physleta.2007.05.028
[30]Li, R. H.; Xu, W.; Li, S.: Adaptive generalized projective synchronization in different chaotic systems based on parameter identification, Phys. lett. A 367, 199-206 (2007) · Zbl 1209.93078 · doi:10.1016/j.physleta.2007.03.025
[31]Tan, X. H.; Zhang, J. Y.; Yang, Y. R.: Synchronizing chaotic systems using backstepping design, Chaos solitons fractals 16, 37-45 (2003) · Zbl 1035.34025 · doi:10.1016/S0960-0779(02)00153-4
[32]Ge, S. S.; Wang, C.; Lee, T. H.: Adaptive backstepping control of a class of chaotic systems, Internat. J. Bifur. 10, 1149-1156 (2000) · Zbl 1090.34555 · doi:10.1142/S0218127400000815
[33]Wang, C.; Ge, S. S.: Adaptive backstepping control of uncertain Lorenz system, Internat. J. Bifur. 11, 1115-1119 (2001) · Zbl 1090.93536 · doi:10.1142/S0218127401002560
[34]Yu, Y. G.; Zhang, S. C.: Adaptive backstepping control of uncertain Lü system, Chin. phys. 11, No. 12, 1249-1253 (2002)