zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
H finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance. (English) Zbl 1214.93043
Summary: Finite-time stability concerns the boundedness of system during a fixed finite-time interval. For switched systems, finite-time stability property can be affected significantly by switching behavior; however, it was neglected by most previous research. In this paper, the problems of finite-time stability analysis and stabilization for switched nonlinear discrete-time systems are addressed. First, sufficient conditions are given to ensure a class of switched nonlinear discrete-time system subjected to norm bounded disturbance finite-time bounded under arbitrary switching, and then the results are extended to H finite-time boundedness of switched nonlinear discrete-time systems. Finally based on the results on finite-time boundedness, a state feedback controller is designed to H finite-time stabilize a switched nonlinear discrete-time system. A numerical design example is given to illustrate the proposed results within this paper.
93B36H -control
93C10Nonlinear control systems
93C55Discrete-time control systems
[1]Weiss, L.; Infante, E.: Finite time stability under perturbing forces and on product spaces, IEEE transactions on automatic control 12, 54-59 (1967)
[2]Michel, A. N.; Wu, S. H.: Stability of discrete systems over a finite interval of time, International journal of control 9, 679-693 (1969) · Zbl 0174.40404 · doi:10.1080/00207176908905789
[3]D’angelo, H.: Linear time-varying systems: analysis and synthesis, (1970) · Zbl 0202.08502
[4]Amato, F.; Ariola, M.; Cosentino, C.: Finite-time stabilization via dynamic output feedback, Automatica 41, 337-342 (2006) · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007
[5]Amato, F.; Ariola, M.: Finite-time control of discrete-time linear systems, IEEE transactions on automatic control 50, 724-729 (2005)
[6]Meng, Q.; Shen, Y.: Finite-time H control for linear continuous system with norm bounded disturbance, Communications in nonlinear science and numerical simulations 14, 1043-1049 (2009) · Zbl 1221.93066 · doi:10.1016/j.cnsns.2008.03.010
[7]Liberzon, D.: Switching in systems and control, (2003)
[8]Sun, Z.; Ge, S. S.: Switched linear systems–control and design, (2005)
[9]R.A. Decarlo, M.S. Branicky, S. Pettersson, B. Lennartson, Perspectives and results on the stability and stabilization of hybrid systems, in: Proceedings of the IEEE, vol. 88, 2000, pp. 1069–1082.
[10]A. Balluchi, M.D. Benedetto, C. Pinello, C. Rossi, A. Sangiovanni-Vincentelli, Cut-off in engine control: a hybrid system approach, in: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, pp. 4720–4725.
[11]B.E. Bishop, M.W. Spong, Control of redundant manipulators using logic-based switching, in: Proceedings of the 36th IEEE Conference on Decision and Control, 1998, pp. 16–18.
[12]Zhang, W.; Branicky, M. S.; Phillips, S. M.: Stability of networked control systems, IEEE control systems magazine 21, 84-99 (2001)
[13]I.V. Kolmanovsky, J. Sun, A multi-mode switching-based command tracking in network controlled systems with pointwise-in-time constraints and disturbance inputs, in: Proceedings of the Sixth WCICA, 2006, pp. 199–104.
[14]Narendra, K. S.; Driollet, O. A.; Feiler, M.; George, K.: Adaptive control using multiple models, switching and tuning, International journal of adaptive control and signal processing 17, 87-102 (2003) · Zbl 1016.93034 · doi:10.1002/acs.740
[15]Phat, V. N.: Switched controller design for stabilization of nonlinear hybrid systems with time-varying delays in state and control, Journal of the franklin institute 347, 195-207 (2010)
[16]Sreekumar, C.; Agarwal, V.: A hybrid control algorithm for voltage regulation in DC–DC boost converter, IEEE transactions on industrial electronics 55, 2530-2538 (2008)
[17]Narendra, K. S.; Balakrishnan, J. A.: Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE transactions on automatic control 39, 2469-2471 (1994) · Zbl 0825.93668 · doi:10.1109/9.362846
[18]Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE transactions on automatic control 43, 475-482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[19]Ye, H.; Michel, A. N.; Hou, L.: Stability theory for hybrid dynamic systems, IEEE transactions on automatic control 43, 461-474 (1998) · Zbl 0905.93024 · doi:10.1109/9.664149
[20]Zhang, L.; Wang, C.; Chen, L.: Stability and stabilization of a class of multimode linear discrete-time systems with polytopic uncertainties, IEEE transactions on industrial electronics 56, 3684-3692 (2009)
[21]Morse, A. S.: Supervisory control of families of linear set-point controllers, part 1: exact matching, IEEE transactions on automatic control 41, 1413-1431 (1996) · Zbl 0872.93009 · doi:10.1109/9.539424
[22]J.P. Hespanha, D. Liberzon, A.S. Morse, Stability of switched systems with average dwell time, in: Proceedings of the 38th Conference on Decision and Control, 1999, pp. 2655–2660.
[23]G.S. Zhai, B. Hu, K. Yasuda, A.N. Michel, Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, in: Proceedings of the American Control Conference, 2000, pp. 200–204.
[24]Zhang, L.; Shi, P.: Stability, L2 gain and asynchronous control of discrete-time switched systems with average Dwell time, IEEE transactions on automatic control 54, 2193-2200 (2009)
[25]Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, 308-322 (2009)
[26]Leith, D. J.; Shorten, R. N.; Leithead, W. E.; Mason, O.; Curran, P.: Issues in the design of switched linear control systems: a benchmark study, International journal of adaptive control and signal processing 17, 103-118 (2003) · Zbl 1016.93026 · doi:10.1002/acs.741
[27]Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems, IEEE control systems magazine 19, 59-70 (1999)
[28]Mahmoud, M. S.; Nounou, H. N.; Xia, Y.: Robust dissipative control for Internet-based switching systems, Journal of the franklin institute 347, 154-172 (2010)
[29]Zhao, X.; Zeng, Q.: New robust delay-dependent stability and H analysis for uncertain Markovian jump systemswith time-varying delays, Journal of the franklin institute 347, 863-874 (2010)
[30]Zhai, G.; Hu, B.; Yasuda, K.; Michel, A. N.: Disturbance attenuation properties of time-controlled switched systems, Journal of the franklin institute 338, 765-779 (2001) · Zbl 1022.93017 · doi:10.1016/S0016-0032(01)00030-8
[31]Wang, Y.; Xie, L.; De Souza, C. E.: Robust control of a class of uncertain nonlinear systems, System and control letters 19, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[32]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)