[1] | Weiss, L.; Infante, E.: Finite time stability under perturbing forces and on product spaces, IEEE transactions on automatic control 12, 54-59 (1967) |

[2] | Michel, A. N.; Wu, S. H.: Stability of discrete systems over a finite interval of time, International journal of control 9, 679-693 (1969) · Zbl 0174.40404 · doi:10.1080/00207176908905789 |

[3] | D’angelo, H.: Linear time-varying systems: analysis and synthesis, (1970) · Zbl 0202.08502 |

[4] | Amato, F.; Ariola, M.; Cosentino, C.: Finite-time stabilization via dynamic output feedback, Automatica 41, 337-342 (2006) · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007 |

[5] | Amato, F.; Ariola, M.: Finite-time control of discrete-time linear systems, IEEE transactions on automatic control 50, 724-729 (2005) |

[6] | Meng, Q.; Shen, Y.: Finite-time H$\infty $ control for linear continuous system with norm bounded disturbance, Communications in nonlinear science and numerical simulations 14, 1043-1049 (2009) · Zbl 1221.93066 · doi:10.1016/j.cnsns.2008.03.010 |

[7] | Liberzon, D.: Switching in systems and control, (2003) |

[8] | Sun, Z.; Ge, S. S.: Switched linear systems–control and design, (2005) |

[9] | R.A. Decarlo, M.S. Branicky, S. Pettersson, B. Lennartson, Perspectives and results on the stability and stabilization of hybrid systems, in: Proceedings of the IEEE, vol. 88, 2000, pp. 1069–1082. |

[10] | A. Balluchi, M.D. Benedetto, C. Pinello, C. Rossi, A. Sangiovanni-Vincentelli, Cut-off in engine control: a hybrid system approach, in: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, pp. 4720–4725. |

[11] | B.E. Bishop, M.W. Spong, Control of redundant manipulators using logic-based switching, in: Proceedings of the 36th IEEE Conference on Decision and Control, 1998, pp. 16–18. |

[12] | Zhang, W.; Branicky, M. S.; Phillips, S. M.: Stability of networked control systems, IEEE control systems magazine 21, 84-99 (2001) |

[13] | I.V. Kolmanovsky, J. Sun, A multi-mode switching-based command tracking in network controlled systems with pointwise-in-time constraints and disturbance inputs, in: Proceedings of the Sixth WCICA, 2006, pp. 199–104. |

[14] | Narendra, K. S.; Driollet, O. A.; Feiler, M.; George, K.: Adaptive control using multiple models, switching and tuning, International journal of adaptive control and signal processing 17, 87-102 (2003) · Zbl 1016.93034 · doi:10.1002/acs.740 |

[15] | Phat, V. N.: Switched controller design for stabilization of nonlinear hybrid systems with time-varying delays in state and control, Journal of the franklin institute 347, 195-207 (2010) |

[16] | Sreekumar, C.; Agarwal, V.: A hybrid control algorithm for voltage regulation in DC–DC boost converter, IEEE transactions on industrial electronics 55, 2530-2538 (2008) |

[17] | Narendra, K. S.; Balakrishnan, J. A.: Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE transactions on automatic control 39, 2469-2471 (1994) · Zbl 0825.93668 · doi:10.1109/9.362846 |

[18] | Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE transactions on automatic control 43, 475-482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150 |

[19] | Ye, H.; Michel, A. N.; Hou, L.: Stability theory for hybrid dynamic systems, IEEE transactions on automatic control 43, 461-474 (1998) · Zbl 0905.93024 · doi:10.1109/9.664149 |

[20] | Zhang, L.; Wang, C.; Chen, L.: Stability and stabilization of a class of multimode linear discrete-time systems with polytopic uncertainties, IEEE transactions on industrial electronics 56, 3684-3692 (2009) |

[21] | Morse, A. S.: Supervisory control of families of linear set-point controllers, part 1: exact matching, IEEE transactions on automatic control 41, 1413-1431 (1996) · Zbl 0872.93009 · doi:10.1109/9.539424 |

[22] | J.P. Hespanha, D. Liberzon, A.S. Morse, Stability of switched systems with average dwell time, in: Proceedings of the 38th Conference on Decision and Control, 1999, pp. 2655–2660. |

[23] | G.S. Zhai, B. Hu, K. Yasuda, A.N. Michel, Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, in: Proceedings of the American Control Conference, 2000, pp. 200–204. |

[24] | Zhang, L.; Shi, P.: Stability, L2 gain and asynchronous control of discrete-time switched systems with average Dwell time, IEEE transactions on automatic control 54, 2193-2200 (2009) |

[25] | Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, 308-322 (2009) |

[26] | Leith, D. J.; Shorten, R. N.; Leithead, W. E.; Mason, O.; Curran, P.: Issues in the design of switched linear control systems: a benchmark study, International journal of adaptive control and signal processing 17, 103-118 (2003) · Zbl 1016.93026 · doi:10.1002/acs.741 |

[27] | Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems, IEEE control systems magazine 19, 59-70 (1999) |

[28] | Mahmoud, M. S.; Nounou, H. N.; Xia, Y.: Robust dissipative control for Internet-based switching systems, Journal of the franklin institute 347, 154-172 (2010) |

[29] | Zhao, X.; Zeng, Q.: New robust delay-dependent stability and H$\infty $ analysis for uncertain Markovian jump systemswith time-varying delays, Journal of the franklin institute 347, 863-874 (2010) |

[30] | Zhai, G.; Hu, B.; Yasuda, K.; Michel, A. N.: Disturbance attenuation properties of time-controlled switched systems, Journal of the franklin institute 338, 765-779 (2001) · Zbl 1022.93017 · doi:10.1016/S0016-0032(01)00030-8 |

[31] | Wang, Y.; Xie, L.; De Souza, C. E.: Robust control of a class of uncertain nonlinear systems, System and control letters 19, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C |

[32] | Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994) |