zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variance-constrained dissipative observer-based control for a class of nonlinear stochastic systems with degraded measurements. (English) Zbl 1214.93104
Summary: This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed algorithm.
MSC:
93E03General theory of stochastic systems
93B35Sensitivity (robustness) of control systems
93C10Nonlinear control systems
90C22Semidefinite programming
References:
[1]Chang, K.; Wang, W.: Robust covariance control for perturbed stochastic multivariable system via variable structure control, Systems control lett. 37, 323-328 (1999) · Zbl 0948.93008 · doi:10.1016/S0167-6911(99)00038-9
[2]Dong, X.: Robust strictly dissipative control for discrete singular systems, IET control theory appl. 1, No. 4, 1060-1067 (2007)
[3]He, X.; Wang, Z.; Ji, Y. D.; Zhou, D.: Fault detection for discrete-time systems in a networked environment, Internat. J. Systems sci. 41, No. 8, 937-945 (2010) · Zbl 1213.93123 · doi:10.1080/00207720902974744
[4]Hill, D.; Moylan, P.: The stability of nonlinear dissipative systems, IEEE trans. Automat. control, 708-711 (1976) · Zbl 0339.93014 · doi:10.1109/TAC.1976.1101352
[5]Hotz, A.; Skelton, R. E.: A covariance control theory, Internat. J. Control 46, No. 1, 13-32 (1987) · Zbl 0626.93080 · doi:10.1080/00207178708933880
[6]Hung, Y.; Yang, F.: Robust H filtering with error variance constraints for uncertain discrete time-varying systems with uncertainty, Automatica 39, No. 7, 1185-1194 (2003) · Zbl 1022.93046 · doi:10.1016/S0005-1098(03)00117-1
[7]Liang, J.; Wang, Z.; Li, P.: Robust synchronisation of delayed neural networks with both linear and non-linear couplings, Internat. J. Systems sci. 40, No. 9, 973-984 (2009)
[8]Li, Z.; Wang, J.; Shao, H.: Delay-dependent dissipative control for linear time-delay systems, J. franklin inst. 339, 529-542 (2002) · Zbl 1048.93050 · doi:10.1016/S0016-0032(02)00030-3
[9]Ma, L.; Wang, Z.; Hu, J.; Bo, Y.; Guo, Z.: Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements, Signal process. 90, No. 6, 2060-2071 (2010) · Zbl 1197.94088 · doi:10.1016/j.sigpro.2010.01.010
[10]M. Oliveira, J. Geromel, Numerical comparison output feedback design methods, in: Proceedings of American Control Conference, Albuquerque, NM, 1997, pp. 72-76.
[11]Subramanian, A.; Sayed, A.: Multiobjective filter design for uncertain stochastic time-delay systems, IEEE trans. Automat. control 49, No. 1, 149-154 (2004)
[12]Tan, Z.; Soh, Y.; Xie, L.: Dissipative control for linear discrete-time systems, Automatica 35, 1557-1564 (1999)
[13]Tarn, T.; Rasis, Y.: Observers for nonlinear stochastic systems, IEEE trans. Automat. control 21, No. 6, 441-447 (1976) · Zbl 0332.93075 · doi:10.1109/TAC.1976.1101300
[14]Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust variance-constrained H control for stochastic systems with multiplicative noises, J. math. Anal. appl. 328, 487-502 (2007) · Zbl 1117.93068 · doi:10.1016/j.jmaa.2006.05.067
[15]Wang, Z.; Ho, D. W. C.; Liu, X.: Robust filtering under randomly varying sensor delay with variance constraints, IEEE trans. Circuits syst. II: express briefs 51, No. 6, 320-326 (2004)
[16]Wang, Z.; Ho, D. W. C.; Liu, X.: Variance-constrained filtering for uncertain stochastic systems with missing measurements, IEEE trans. Automat. control 48, No. 7, 560-567 (2003)
[17]Wang, Z.; Gao, H.: Dynamics analysis of gene regulatory networks, Internat. J. Systems sci. 41, No. 1, 1-4 (2010)
[18]Wang, Z.; Gao, H.: Analysis and synchronization of complex networks, Internat. J. Systems sci. 40, No. 9, 905-907 (2009)
[19]Wei, G.; Wang, Z.; Shu, H.: Robust filtering with stochastic nonlinearities and multiple missing measurements, Automatica 45, 836-841 (2009) · Zbl 1168.93407 · doi:10.1016/j.automatica.2008.10.028
[20]Willems, J.: Dissipative dynamical systems, part 1: general theory; part 2: linear systems with quadratic supply rate, Arch. ration. Mech. anal. 45, 321-393 (1972)
[21]Xie, S.; Xie, L.; Souza, C.: Robust dissipative control for linear systems with dissipative uncertainty, Internat. J. Control 70, 169-191 (1998) · Zbl 0930.93068 · doi:10.1080/002071798222352
[22]Yang, F.; Wang, Z.; Ho, D. W. C.; Liu, X.: Robust H2 filtering for a class of systems with stochastic nonlinearities, IEEE trans. Circuits syst. II: express briefs 53, No. 3, 235-239 (2006)
[23]Yang, F.; Wang, Z.; Ho, D. W. C.; Gani, M.: Robust H control with missing measurements and time delays, IEEE trans. Automat. control 52, No. 9, 1666-1672 (2007)
[24]K. Yasuda, S. Kherat, R. Skelton, E. Yaz, Covariance control and robustness of bilinear systems, in: Proc. IEEE Conf. Decision Contr., Honolulu, Hawaii, 1990, pp. 1421-1425.
[25]Yaz, Y.; Yaz, E.: On LMI formulations of some problems arising in nonlinear stochastic system analysis, IEEE trans. Automat. control 44, No. 4, 813-816 (1999) · Zbl 0957.93088 · doi:10.1109/9.754824
[26]Zhao, Y.; Gao, H.; Lam, J.; Du, B.: Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach, IEEE trans. Fuzzy syst. 17, No. 4, 750-762 (2009)
[27]Zhao, Y.; Lam, J.; Gao, H.: Fault detection for fuzzy systems with intermittent measurement, IEEE trans. Fuzzy syst. 17, No. 2, 398-410 (2009)
[28]Zhao, Y.; Zhang, C.; Gao, H.: A new approach to guaranteed cost control of T-S fuzzy dynamic systems with interval parameter uncertainties, IEEE trans. Syst. man cybernet., part B 39, No. 6, 1516-1527 (2009)