zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Further results on output-feedback regulation of stochastic nonlinear systems with SiISS inverse dynamics. (English) Zbl 1214.93105
Summary: This article further discusses the problem of output-feedback regulation for more general stochastic nonlinear systems with stochastic integral input-to-state stable inverse dynamics, and focuses on solving the important and unsolved problem proposed in [X. Yu and X. J. Xie, Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics, IEEE Trans. Automatic Control 55, 304–320 (2010)]: How to weaken the conditions on nonlinearities in drift and diffusion vector fields? Under the weaker conditions, how to make full use of the known information of stochastic nonlinear systems to design an adaptive output-feedback controller such that all the closed-loop signals are almost surely bounded and the output is driven to zero almost surely?
MSC:
93E03General theory of stochastic systems
93C10Nonlinear control systems
93B52Feedback control
93D15Stabilization of systems by feedback