zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithms for solving Hermite interpolation problems using the fast Fourier transform. (English) Zbl 1215.33009

Hermite interpolation problems with equally spaced nodes {z j =e i2πj/n } j=0 n-1 on the unit circle are considered. This problem is decomposed into two problems I and II. The Hermite interpolation problem of type I with equally spaced nodes on the unit circle (well-known as Hermite-Fejér interpolation problem) is said to be a problem to determine a polynomial H I,2n-1 (z) 2n-1 such that H I,2n-1 (z j )=u j and H I,2n-1 (1) (z j )=0 for j=0,,n-1. In Theorem 2 it is proved that a solution of the Hermite interpolation problem of type I is given by H I,2n-1 (z)= k=0 2n-1 c k Z k (z), where

{Z k (z)} k=0 2n-1 ={z k } k=0 n-1 {z n+k -z k (1+k(n+k))/(1+k 2 )} k=0 n-1

and

c k =1 1+k 2 1 n j=0 n-1 u j z ¯ j k ,c k+n =-k n1 n j=0 n-1 u j z ¯ j k ,k=0,,n-1·

The Hermite interpolation problem of type II is solved in Theorem 3. To compute the coefficients c k , the fast Fourier transform (FFT) is used. The general Hermite interpolation problems with an arbitrary number of derivatives in the case of algebraic and Laurent polynomials are also considered. In Section 4 algorithms for computing the Hermite interpolation polynomials in the interval [-1,1] based on the Tchebycheff nodes {cos(π(2j+1)/2n)} j=0 n-1 and the Hermite trigonometric interpolation problems on [0,2π] are considered.

MSC:
33C47Other special orthogonal polynomials and functions
65D05Interpolation (numerical methods)
33C52Orthogonal polynomials and functions associated with root systems
65T50Discrete and fast Fourier transforms (numerical methods)
65D15Algorithms for functional approximation
65T40Trigonometric approximation and interpolation (numerical methods)
References:
[1]Faber, G.: Über die interpolatorische darstellung stetiger funktionen, Jber. deutsch. Math. verein 23, 192-210 (1914) · Zbl 45.0381.04
[2]Fejér, L.: Über interpolation, Gött. nachr., 66-91 (1916)
[3]Hermite, C.: Sur la formula d’interpolation de Lagrange, J. math. 84, 70-79 (1878)
[4]Daruis, L.; González-Vera, P.: A note on Hermite–Fejér interpolation for the unit circle, Appl. math. Letters 14, 997-1003 (2001) · Zbl 0982.41003 · doi:10.1016/S0893-9659(01)00078-7
[5]Kincaid, D.; Cheney, W.: Numerical analysis: mathematics of scientific computation, (1991) · Zbl 0745.65001
[6]Stoer, J.; Bulirsch, R.: Introduction to numerical analysis, (1996)
[7]
[8]Schoenberg, I. J.: On Hermite–Birkhoff interpolation, J. math. Anal. appl. 16, 538-543 (1966) · Zbl 0156.28702 · doi:10.1016/0022-247X(66)90160-0
[9]Rivlin, T.: The Chebyshev polynomials, Pure and applied mathematics (1974) · Zbl 0299.41015
[10]Davis, P. J.: Interpolation and approximation, (1975) · Zbl 0329.41010
[11]Szabados, J.; Vértesi, P.: A survey on mean convergence of interpolatory processes, J. comput. Appl. math. 43, 3-18 (1992) · Zbl 0761.41004 · doi:10.1016/0377-0427(92)90256-W
[12]Berrut, J. -P.; Welscher, A.: Fourier and barycentric formulae for equidistant Hermite trigonometric interpolation, Appl. comput. Harmon. anal. 23, 307-320 (2007) · Zbl 1215.41006 · doi:10.1016/j.acha.2007.01.004
[13]Quak, E.: Trigonometric wavelets for Hermite interpolation, Math. comput. 65, No. 214, 683-722 (1996) · Zbl 0873.42024 · doi:10.1090/S0025-5718-96-00719-3
[14]Sahakyan, K. P.: Hermite trigonometric interpolation, East J. Approx. 12, No. 4, 441-449 (2006)
[15]Kress, R.: On general Hermite trigonometric interpolation, Numer. math. 20, 125-138 (1972) · Zbl 0231.65009 · doi:10.1007/BF01404402