zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. (English) Zbl 1215.37024
Summary: Recently, the fractional-order Chen-Lee system was proven to exhibit chaos by the presence of a positive Lyapunov exponent. However, the existence of chaos in fractional-order Chen-Lee systems has never been theoretically proven in the literature. Moreover, synchronization of chaotic fractional-order systems was extensively studied through numerical simulations in some of the literature, but a theoretical analysis is still lacking. Therefore, we devoted ourselves to investigating the theoretical basis of chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems in this paper. Based on the stability theorems of fractional-order systems, the necessary conditions for the existence of chaos and the controllers for hybrid projective synchronization were derived. The numerical simulations show coincidence with the theoretical results.
37D45Strange attractors, chaotic dynamics
34A08Fractional differential equations
34D20Stability of ODE
[1]Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
[2]Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991) · doi:10.2514/3.20641
[3]Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)
[4]Sun, H.H., Abdelwahed, A.A., Onaral, B.: Linear approximation for transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[5]Laskin, N.: Fractional market dynamics. Physica A 287, 482–492 (2000) · doi:10.1016/S0378-4371(00)00387-3
[6]Kunsezov, D., Bulagc, A., Dang, G.D.: Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999) · doi:10.1103/PhysRevLett.82.1136
[7]Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)
[8]Yu, Y., Li, H.X., Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42, 1181–1189 (2009) · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016
[9]Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order duffing system. In: Proceedings of ECCTD, pp. 1259–1262, Budapest (1997)
[10]Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaotic dynamics of the fractionally damped duffing equation. Chaos Solitons Fractals 31, 1459–1468 (2007) · Zbl 1129.37015 · doi:10.1016/j.chaos.2005.11.066
[11]Ge, Z.M., Ou, C.Y.: Chaos in a fractional order modified duffing system. Chaos Solitons Fractals 34, 262–291 (2007) · Zbl 1132.37324 · doi:10.1016/j.chaos.2005.11.059
[12]Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua system. IEEE Trans. Circuits Syst. I 42, 485–490 (1995) · doi:10.1109/81.404062
[13]Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171–185 (2006) · doi:10.1016/j.physa.2005.06.078
[14]Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27, 685–688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[15]Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[16]Chen, J.H., Chen, W.C.: Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Solitons Fractals 35, 188–198 (2008) · doi:10.1016/j.chaos.2006.05.010
[17]Ge, Z.M., Zhang, A.R.: Chaos in a modified van der Pol system and in its fractional order systems. Chaos Solitons Fractals 32, 1791–1822 (2007) · doi:10.1016/j.chaos.2005.12.024
[18]Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M., Chen, W.C., Lin, K.T., Kang, Y.: Chaos in the Newton–Leipnik system with fractional order. Chaos Solitons Fractals 36, 98–103 (2008) · Zbl 1152.37319 · doi:10.1016/j.chaos.2006.06.013
[19]Sheu, L.J., Tam, L.M., Lao, S.K., Kang, Y., Lin, K.T., Chen, J.H., Chen, H.K.: Parametric analysis and impulsive synchronization of fractional-order Newton–Leipnik systems. Int. J. Nonlinear Sci. Numer. Simul. 10, 33–44 (2009)
[20]Chen, H.K., Lee, C.I.: Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21, 957–965 (2004) · Zbl 1046.70005 · doi:10.1016/j.chaos.2003.12.034
[21]Tam, L.M., SiTou, W.M.: Parametric study of the fractional order Chen–Lee system. Chaos Solitons Fractals 37, 817–826 (2008) · doi:10.1016/j.chaos.2006.09.067
[22]Sheu, L.J., Tam, L.M., Chen, H.K., Lao, S.K.: Alternative implementation of the chaotic Chen–Lee system. Chaos Solitons Fractals 41, 1923–1929 (2009) · doi:10.1016/j.chaos.2008.07.053
[23]Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaos in a new system with fractional order. Chaos Solitons Fractals 31, 1203–1212 (2007) · doi:10.1016/j.chaos.2005.10.073
[24]Matignon, D.: Stability results of fractional differential equations with applications to control processing. In: Proceedings of IMACS, IEEE-SMC, pp. 963–968. France (1996)
[25]Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[26]Ahmed, E., El-Sayed, A., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[27]Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Physica D 237, 2628–2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[28]Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102–113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[29]Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
[30]Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)
[31]Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[32]Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37, 1465–1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[33]Tavazoei, M.S., Haeri, M.: Unreliability of frequency-domain approximation in recognizing chaos in fractional-order systems. IET Signal Process. 1, 171–181 (2007) · doi:10.1049/iet-spr:20070053
[34]Chen, H.K.: Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü. Chaos Solitons Fractals 25, 1049–1056 (2005) · Zbl 1198.34069 · doi:10.1016/j.chaos.2004.11.032
[35]Park, J.H.: Chaos synchronization between two different chaotic dynamical systems. Chaos Solitons Fractals 27, 549–554 (2006) · Zbl 1102.37304 · doi:10.1016/j.chaos.2005.03.049
[36]Chen, J.H., Chen, H.K., Lin, Y.K.: Synchronization and anti-synchronization coexist in Chen–Lee chaotic systems. Chaos Solitons Fractals 39, 707–716 (2009) · Zbl 1197.37003 · doi:10.1016/j.chaos.2007.01.104
[37]Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9