zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators. (English) Zbl 1215.47012
In this paper, the authors discuss the hypercyclicity and supercyclicity of semigroups generated by Ornstein-Uhlenbeck operators. They show that, under certain conditions, the semigroup is chaotic for the one-dimensional model, otherwise, it is supercyclic but not hypercyclic. For the multi-dimensional case, they obtain similar results.
47A16Cyclic vectors, hypercyclic and chaotic operators
47D06One-parameter semigroups and linear evolution equations
47D07Markov semigroups of linear operators and applications to diffusion processes
[1]Banasiak J.: Birth-and-death type systems with parameter and chaotic dynamics of some linear kinetic models. Z. Anal. Anwendungen 24, 675–690 (2005) · doi:10.4171/ZAA/1262
[2]Banasiak J., Lachowicz M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Ser. II b 329, 439–444 (2001)
[3]Banasiak J., Lachowicz M., Moszyński M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16, 303–308 (2003) · Zbl 1075.47024 · doi:10.1016/S0893-9659(03)80048-4
[4]Banasiak J., Moszyński M.: A generalization of Desch-Schappacher-Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12, 959–972 (2005) · Zbl 1084.47033 · doi:10.3934/dcds.2005.12.959
[5]Banasiak J., Moszyński M.: Hypercyclicity and chaoticity spaces for C 0-semigroups. Discrete Contin. Dyn. Syst. 20, 577–587 (2008)
[6]F. Bayart and T. Bermúdez, Semigroups of chaotic operators. Preprint, 2007.
[7]Bermúdez T., Bonilla A., Emamirad H.: Chaotic tensor product semigroups. Semigroup Forum 71, 252–264 (2005) · Zbl 1094.47009 · doi:10.1007/s00233-005-0507-z
[8]Bermúdez T., Bonilla A., Torrea J.L.: Chaotic behavior of the Riesz transforms for Hermite expansions. J. Math. Anal. Appl. 337, 702–711 (2008) · Zbl 05197070 · doi:10.1016/j.jmaa.2007.03.069
[9]Bès J., Peris A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999) · Zbl 0941.47002 · doi:10.1006/jfan.1999.3437
[10]Conejero J.A., Müller V., Peris A.: Hypercyclic behaviour of operators in a hypercyclic C0-semigroup. J. Funct. Anal. 244, 342–348 (2007) · Zbl 1123.47010 · doi:10.1016/j.jfa.2006.12.008
[11]Costakis G., Peris A.: Hypercyclic semigroups and somewhere dense orbits. C. R. Math. Acad. Sci. Paris 335, 895–898 (2002)
[12]deLaubenfels R., Emamirad H.: Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory Dynam. Systems 21, 1411–1427 (2001) · Zbl 0997.47027 · doi:10.1017/S0143385701001675
[13]deLaubenfels R., Emamirad H., Grosse-Erdmann K.G.: Chaos for semigroups of unbounded operators. Math. Nachr. 261(262), 47–59 (2003) · Zbl 1051.47006 · doi:10.1002/mana.200310112
[14]Desch W., Schappacher W., Webb G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory Dynam. Systems 17, 793–819 (1997) · Zbl 0910.47033 · doi:10.1017/S0143385797084976
[15]Dyson J., Villella-Bressan R., Webb G.: Hypercyclicity of solutions of a transport equation with delays. Nonlinear Anal. 29, 1343–1351 (1997) · Zbl 0899.34046 · doi:10.1016/S0362-546X(96)00192-7
[16]El Mourchid S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73, 313–316 (2006) · Zbl 1115.47009 · doi:10.1007/s00233-005-0533-x
[17]El Mourchid S., Metafune G., Rhandi A., Voigt J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339, 918–924 (2008) · Zbl 1127.92015 · doi:10.1016/j.jmaa.2007.07.034
[18]Emamirad H.: Hypercyclicity in the scattering theory for linear transport equation. Trans. Amer. Math. Soc. 350, 3707–3716 (1998) · Zbl 0899.35071 · doi:10.1090/S0002-9947-98-02062-5
[19]Herzog G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997) · Zbl 0886.35026 · doi:10.1002/mana.19971880110
[20]Howard K.E.: A size structured model of cell dwarfism. Discrete Contin. Dyn. Syst. Ser. B 1, 471–484 (2001) · Zbl 0989.92014 · doi:10.3934/dcdsb.2001.1.471
[21]Howard K.E.: A size and maturity structured model of cell dwarfism exhibiting chaotic behavior. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13, 3001–3013 (2003) · Zbl 1058.92016 · doi:10.1142/S0218127403008363
[22]Kalmes T.: On chaotic C 0-semigroups and infinitely regular hypercyclic vectors. Proc. Amer. Math. Soc. 134, 2997–3002 (2006) (electronic) · Zbl 1103.47028 · doi:10.1090/S0002-9939-06-08391-2
[23]Kalmes T.: Hypercyclic, mixing, and chaotic C0-semigroups induced by semiflows. Ergodic Theory Dynam. Systems 27, 1599–1631 (2007) · Zbl 1134.37006 · doi:10.1017/S0143385707000144
[24]L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 283, Boca Raton, FL, 2007.
[25]Lunardi A.: On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures. Trans. Amer. Math. Soc. 349, 155–169 (1997) · Zbl 0890.35030 · doi:10.1090/S0002-9947-97-01802-3
[26]Metafune G.: L p -spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)(30), 97–124 (2001)
[27]Myjak J., Rudnicki R.: Stability versus chaos for a partial differential equation. Chaos Solitons Fractals 14, 607–612 (2002) · Zbl 1005.35029 · doi:10.1016/S0960-0779(01)00190-4
[28]Protopopescu V., Azmy Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2, 79–90 (1992) · Zbl 0770.58024 · doi:10.1142/S0218202592000065
[29]Takeo F.: Chaos and hypercyclicity for solution semigroups to chaos and hypercyclicity for solution semigroups to some partial differential equations. Nonlinear Anal. 63, 1943–1953 (2005) (electronic) · Zbl 1226.47009 · doi:10.1016/j.na.2005.02.010