zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Efficient estimation in the Pareto distribution with the presence of outliers. (English) Zbl 1215.62021
Summary: The maximum likelihood (ML) and uniformly minimum variance unbiased estimators (UMVUE) of the probability density function (pdf), cumulative distribution function (cdf) and rth moment are derived for the Pareto distribution in the presence of outliers. It has been shown that the MLEs of the pdf and cdf are better than their UMVUEs. At the end, these methods are illustrated with the help of real data from an insurance company.

MSC:
62F10Point estimation
62P05Applications of statistics to actuarial sciences and financial mathematics
References:
[1]Asrabadi, B. R.: Estimation in the Pareto distribution, Metrika 37, 199-205 (1990) · Zbl 0693.62032 · doi:10.1007/BF02613522
[2]Benktander, G.: A note on the most ”dangerous” and skewest class of distribution, Astin bulletin 2, 387-390 (1963)
[3]Dixit, U. J.: Estimation of parameters of the gamma distribution in the presence of outliers, Communications in statistics. Theory and methods 18, No. 8, 3071-3085 (1989) · Zbl 0696.62118 · doi:10.1080/03610928908830078
[4]Dixit, U. J.: On the estimation of power of scale parameter of the gamma distribution in the presence of outliers, Communications in statistics. Theory and methods 20, No. 4, 1315-1328 (1991) · Zbl 0724.62027 · doi:10.1080/03610929108830567
[5]Dixit, U. J.; Ali, M. M.; Woo, Jungsoo: Efficient estimation of parameters of a uniform distribution in the presence of outliers, Soochow journal of mathematics 29, No. 4, 363-369 (2003) · Zbl 1044.62023
[6]Dixit, U. J.; Nooghabi, M. Jabbari: Efficient estimation in the Pareto distribution, Statistical methodology 7, No. 6, 687-691 (2010) · Zbl 1232.62044 · doi:10.1016/j.stamet.2010.04.002
[7]Dixit, U. J.; Moore, K. L.; Barnett, V.: On the estimation of the scale parameter of the exponential distribution in the presence of outliers generated from uniform distribution, Metron 54, No. 3-4, 201-211 (1996) · Zbl 0893.62012
[8]Dixit, U. J.; Nasiri, F. P.: Estimation of parameters of the exponential distribution in the presence of outliers generated from uniform distribution, Metron 59, No. 3-4, 187-198 (2001) · Zbl 1003.62015
[9]Nadeau, T. P.; Teorey, T. J.: A Pareto model for OLAP view size estimation, Information systems frontiers 5, No. 2, 137-147 (2003)