zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of a higher-order family of iterative methods. (English) Zbl 1215.65094
Authors’ abstract: We study the dynamics of a higher-order family of iterative methods for solving non-linear equations. We show that these iterative root-finding methods are generally convergent when extracting radicals. We examine the Julia sets of these methods with particular polynomials. The examination takes place in the complex plane.
65H05Single nonlinear equations (numerical methods)
65E05Numerical methods in complex analysis
[1]Amat, S.; Busquier, S.: Geometry and convergence of some third-order methods, Southwest J. Pure appl. Math. 2, 61-72 (2001) · Zbl 0992.65047 · doi:emis:journals/SWJPAM/vol2-01.html
[2]Amat, S.; Busquier, S.; Gutiérrez, J. M.: Geometric constructions of iterative functions to solve nonlinear equations, J. comput. Appl. math. 157, No. 1, 197-205 (2003) · Zbl 1024.65040 · doi:10.1016/S0377-0427(03)00420-5
[3]Bergweiler, W.: Iteration of meromorphic functions, Bull. AMS 29, 151-188 (1993) · Zbl 0791.30018 · doi:10.1090/S0273-0979-1993-00432-4
[4]Blanchard, P.: Complex analytic dynamics on the Riemann sphere, Bull. AMS 11, No. 1, 85-141 (1984) · Zbl 0558.58017 · doi:10.1090/S0273-0979-1984-15240-6
[5]Buff, X.; Henriksen, C.: On könig’s root-finding algorithms, Nonlinearity 16, 989-1015 (2003) · Zbl 1030.37030 · doi:10.1088/0951-7715/16/3/312
[6]Cayley, A.: The Newton–Fourier imaginary problem, Amer. J. Math. 2, 97 (1879) · Zbl 11.0260.02
[7]Curry, J. H.; Garnett, L.; Sullivan, D.: On the iteration of a rational function: computer experiment with Newton’s method, Comm. math. Phys. 91, 267-277 (1983) · Zbl 0524.65032 · doi:10.1007/BF01211162
[8]Gutiérrez, J. M.; Hernández, M. A.; Romero, N.: Dynamics of a new family of iterative processes for quadratic polynomials, J. comput. Appl. math. 233, No. 10, 2688-2695 (2010) · Zbl 1201.65071 · doi:10.1016/j.cam.2009.11.017
[9]Hernández, M. A.; Romero, N.: On a characterization of some Newton-like methods of R-order at least three, J. comput. Appl. math. 183, No. 1, 53-66 (2005) · Zbl 1087.65057 · doi:10.1016/j.cam.2005.01.001
[10]Hernández, M. A.; Romero, N.: High order algorithms for approximating n-th roots, Int. J. Comput. math. 81, No. 8, 1001-1014 (2004) · Zbl 1060.65050 · doi:10.1080/00207160410001714583
[11]Hernández, M. A.; Salanova, M. A.: Indices of convexity and concavity: application to halley method, Appl. math. Comput. 103, 27-49 (1999) · Zbl 0981.65071 · doi:10.1016/S0096-3003(98)10047-4
[12]Kneisl, K.: Julia sets for the super-Newton method, Cauchy’s method and halley’s method, Chaos 11, No. 2, 359-370 (2001) · Zbl 1080.65532 · doi:10.1063/1.1368137
[13]Kriete, H.: Repellors and the stability of Julia set, Math. gottingensis 4 (1995)
[14]Mcmullen, C.: Complex dynamics and renormalization, Annals of mathematics studies (1994)
[15]Mcmullen, C.: Families of rational maps and iterative root-finding algorithms, Ann. of math. 125, 467-493 (1987) · Zbl 0634.30028 · doi:10.2307/1971408
[16]Milnor, J.: One-dimensional complex dynamics, (2006)
[17]Plaza, S.: Conjugacy classes of some numerical methods, Proyecciones, 1-17 (2001)
[18]Rückert, J.; Schleicher, D.: On Newton’s method for entire functions, J. London math. Soc. (2) 75, 659-676 (2007) · Zbl 1217.30024 · doi:10.1112/jlms/jdm046
[19]Schröder, E. O.: On infinitely many algorithms for solving equations, Math. ann. 2 (1870)
[20]Smale, S.: On the efficiency of algorithms of analysis, Bull. AMS 13, No. 2, 87-120 (1985)
[21]Varona, J. L.: Graphic and numerical comparison between iterative methods, Math. intelligencer 24, 37-46 (2002) · Zbl 1003.65046 · doi:10.1007/BF03025310
[22]Vrscay, E.: Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions: a computer assisted study, Math. comput. 46, No. 173, 151-169 (1986) · Zbl 0597.58013 · doi:10.2307/2008220
[23]Vrscay, E.; Gilbert, W.: Extraneous fixed points, basin boundary and chaotic dynamics for Schröder and könig rational iteration functions, Numer. math. 52, 1-16 (1988) · Zbl 0612.30025 · doi:10.1007/BF01401018