zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameter estimation for Boolean models of biological networks. (English) Zbl 1215.92020
Summary: Boolean networks have long been used as models of molecular networks, and they play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network models based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.
MSC:
92C42Systems biology, networks
92-04Machine computation, programs (appl. to natural sciences)
62P10Applications of statistics to biology and medical sciences
68N99Software
References:
[1]Albert, R.; Othmer, H.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, J. theoret. Biol. 223, 1-18 (2003)
[2]Barrett, C.; Herring, C.; Reed, J.; Palsson, B.: The global transcriptional regulatory network for metabolism in escherichia coli exhibits few dominant functional states, Proc. natl. Acad. sci. USA 102, No. 52, 19103-19108 (2005)
[3]Cantone, I.; Marucci, L.; Iorio, F.; Ricci, M.; Belcastro, V.; Bansal, M.; Santini, S.; Di Bernardo, M.; Di Bernardo, D.; Cosma, M.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches, Cell 137, 172-181 (2009)
[4]Chaves, M.; Albert, R.; Sontag, E.: Robustness and fragility of Boolean models for genetic regulatory networks, J. theoret. Biol. 235, 431-449 (2005)
[5]Davidich, M. I.; Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast, Plos one 3, No. 2, e1672 (2007)
[6]E. Dimitrova, J. McGee, R. Laubenbacher, P. Vera Licona, Comparison of discretization methods for network inference, J. Comp. Biol. (in press).
[7]Eickmeyer, K.; Huggins, P.; Pachter, L.; Yoshida, Y.: On the optimality of the neighbor joining algorithm, Algori. mol. Biol. 3, No. 5 (2008)
[8]Faure, A.; Naldi, A.; Chaouiya, C.; Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics 22, No. 14, 124-131 (2006)
[9]Gupta, S.; Bisht, S.; Kukreti, R.; Jain, S.; Brahmachari, S.: Boolean network analysis of a neurotransmitter signaling pathway, J. theor. Biol. 244, No. 3, 463-469 (2007)
[10]A.J. Hartemink, Principled computational methods for the validation and discovery of genetic regulatory networks. Ph.D. Thesis, Massachusetts Institute of Technology, supervisor David K. Gifford, 2001.
[11]Herrgard, M.; Lee, B.; Portnoy, V.; Palsson, B.: Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in saccharomyces cerevisiae, Genome res. 16, 627-635 (2006)
[12]Jarrah, A.; Laubenbacher, R.; Stigler, B.; Stillman, M.: Reverse-engineering of polynomial dynamical systems, Adv. appl. Math. 39, 477-489 (2007) · Zbl 1129.93026 · doi:10.1016/j.aam.2006.08.004
[13]Kauffman, S.: Homeostasis and differentiation in random genetic control networks, Nature 224, 177-178 (1969)
[14]Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets, J. theor. Biol. 22, 432-467 (1969)
[15]Kauffman, S.; Peterson, C.; Samuelsson, B.; Troein, C.: Random Boolean network models and the yeast transcriptional network, Pnas 100, No. 25, 14796-14799 (2003)
[16]Kauffman, S. A.: The origins of order: self–organization and selection in evolution, (1993)
[17]Laubenbacher, R.; Stigler, B.: A computational algebra approach to the reverse-engineering of gene regulatory networks, J. theor. Biol. 229, 523-537 (2004)
[18]Li, F.; Long, T.; Lu, Y.; Ouyang, Q.; Tang, C.: The yeast cell-cycle network is robustly designed, Proc. natl. Acad. sci. USA 101, No. 14, 4781-4786 (2004)
[19]Li, S.; Assmann, S.; Albert, R.: Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling, Plos biology 4, No. 10, e312 (2006)
[20]Mora, T.; Robbiano, L.: The Gröbner Fan of an ideal, J. symbolic. Comput. 6, 183-208 (1988) · Zbl 0668.13017 · doi:10.1016/S0747-7171(88)80042-7
[21]Saez-Rodriguez, J.; Simeoni, L.; Lindquist, J. A.; Hemenway, R.; Bommhardt, U.; Arndt, B.; Haus, U. -U.; Weismantel, R.; Gilles, E. D.; Klamt, S.; Schraven, B.: A logical model provides insights into T cell receptor signaling, Plos comput. Biol. 3, No. 8, e163 (2007)
[22]Samal, A.; Jain, S.: The regulatory network of E. Coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response, BMC syst. Biol. 2 (2008)
[23]Stigler, B.; Jarrah, A.; Stillman, M.; Laubenbacher, R.: Reverse-engineering of dynamic networks, Annals NYAS 1115, 168-177 (2007)
[24]B. Stigler, A. Veliz-Cuba, Network topology as a driver of bistability in the lac operon. 3, 2008, 318–356. http://arxiv.org/abs/0807.3995.
[25]Sturmfels, B.: Gröbner bases and convex polytopes, University lecture series 8 (1996) · Zbl 0856.13020
[26]Thomas, R.: Boolean formalisation of genetic control circuits, J. theor. Biol. 42, 565-583 (1973)
[27]P. Vera-Licona, A. Jarrah, L.D. García-Puente, J. McGee, R. Laubenbacher, An evolutionary algorithm for the selection of polynomial models of biochemical networks, 2009 (under review).
[28]Zhang, R.; Shah, M. V.; Yang, J.; Nyland, S. B.; Liu, X.; Yun, J. K.; Albert, R.; Loughran, T. P.: Network model of survival signaling in large granular lymphocyte leukemia, Proc. natl. Acad. sci. USA 105, No. 42, 16308-16313 (2008)