zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Observer-based impulsive chaotic synchronization of discrete-time switched systems. (English) Zbl 1215.93122
Summary: This paper investigates impulsive chaotic synchronization of discrete-time switched systems with state-dependent switching strategy. The parameter-dependent Lyapunov function (PDLF) technique is used to establish stability criteria for a class of switched systems consisting of both stable and unstable subsystems. With these criteria, sufficient conditions are given to achieve observer-based impulsive chaotic synchronization. Examples are presented to illustrate the criteria.
MSC:
93D05Lyapunov and other classical stabilities of control systems
37D45Strange attractors, chaotic dynamics
34H10Chaos control (ODE)
References:
[1]Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)
[2]Han, S.K., Kurrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75(17), 3190–3193 (1995) · doi:10.1103/PhysRevLett.75.3190
[3]Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399(6734), 354–358 (1999) · doi:10.1038/20676
[4]Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos 2(3), 709–713 (1992) · Zbl 0875.94134 · doi:10.1142/S0218127492000823
[5]Khadra, A., Liu, X.Z., Shen, X.M.: Application of impulsive synchronization to communication security. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(3), 341–351 (2003) · doi:10.1109/TCSI.2003.808839
[6]Khadra, A., Liu, X.Z., Shen, X.M.: Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41(9), 1491–1502 (2005) · Zbl 1086.93051 · doi:10.1016/j.automatica.2005.04.012
[7]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[8]Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[9]Heagy, J.F., Carroll, T.L., Pecora, L.M.: Synchronous chaos in coupled oscillator systems. Phys. Rev. E 50(3), 1874–1885 (1994) · doi:10.1103/PhysRevE.50.1874
[10]Agiza, H.N., Matouk, A.E.: Adaptive synchronization of Chua circuits with fully unknown parameters. Chaos Solitons Fractals 28(1), 219–227 (2006) · Zbl 1089.94048 · doi:10.1016/j.chaos.2005.05.055
[11]Park, J.H., Lee, S.M., Kwon, O.M.: Adaptive synchronization of genesio–tesi chaotic system via a novel feedback control. Phys. Lett. A 371(4), 263–270 (2007) · Zbl 1209.93122 · doi:10.1016/j.physleta.2007.06.020
[12]Yassen, M.T.: Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos Solitons Fractals 26(3), 913–920 (2005) · Zbl 1093.93539 · doi:10.1016/j.chaos.2005.01.047
[13]Zhang, H.B., Liao, X.F., Yu, J.B.: Fuzzy modeling and synchronization of hyperchaotic systems. Chaos Solitons Fractals 26(3), 835–843 (2005) · Zbl 1093.93540 · doi:10.1016/j.chaos.2005.01.023
[14]Morguo, O., Solak, E.: Observer based synchronization of chaotic systems. Phys. Rev. E 54(5), 4803–4811 (1996) · doi:10.1103/PhysRevE.54.4803
[15]Chen, M.Y., Zhou, D.H., Shang, Y.: A new observer-based synchronization scheme for private communication. Chaos Solitons Fractals 24(4), 1025–1030 (2005) · Zbl 1069.94508 · doi:10.1016/j.chaos.2004.09.096
[16]Chen, S.H., Zhang, Q.J., Xie, J., Wang, C.P.: A stable-manifold-based method for chaos control and synchronization. Chaos Solitons Fractals 20(5), 947–954 (2004) · Zbl 1050.93032 · doi:10.1016/j.chaos.2003.09.021
[17]Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(10), 976–988 (1997) · doi:10.1109/81.633887
[18]Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switchedand hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[19]Lakshmikantham, V., Liu, X.Z.: Impulsive hybrid systems and stability theory. Dyn. Syst. Appl. 7(1), 1–10 (1998)
[20]Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2003)
[21]Lu, J.H., Zhou, T.S., Chen, G.R., Yang, X.S.: Generating chaos with a switching piecewise-linear controller. Chaos: Interdiscip. J. Nonlinear Sci. 12(2), 344–349 (2002) · doi:10.1063/1.1478079
[22]Liu, X.Z., Teo, K.L., Zhang, H.T., Chen, G.R.: Switching control of linear systems for generating chaos. Chaos Solitons Fractals 30(3), 725–733 (2006) · Zbl 1143.93322 · doi:10.1016/j.chaos.2005.03.020
[23]Millerioux, G., Daafouz, J.: An observer-based approach for input-independent global chaos synchronization of discrete-time switched systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(10), 1270–1279 (2003) · doi:10.1109/TCSI.2003.816301
[24]Liu, X.Z.: Impulsive stabilization of nonlinear systems. IMA J. Math. Control Inf. 10(1), 11–19 (1993) · Zbl 0789.93101 · doi:10.1093/imamci/10.1.11
[25]Daafouz, J., Bernussou, J.: Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst. Control Lett. 43(5), 355–359 (2001) · Zbl 0978.93070 · doi:10.1016/S0167-6911(01)00118-9