zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. (English) Zbl 1216.34040
The authors prove that there is a stationary distribution of a predator-prey model with modified Leslie-Gower and Holling-type schemes with stochastic perturbations and it has the ergodic property.
MSC:
34C60Qualitative investigation and simulation of models (ODE)
34F05ODE with randomness
92D25Population dynamics (general)
References:
[1]Atar, R.; Budhiraja, A.; Dupuis, P.: On positive recurrence of constrained diffusion processes, Ann. probab. 29, 979-1000 (2001) · Zbl 1018.60081 · doi:10.1214/aop/1008956699
[2]Aziz-Alaoui, M. A.; Okiye, M. Daher: Boundedness and global stability for a predator-prey model with modified Leslie-gower and Holling-type II schemes, Appl. math. Lett. 16, 1069-1075 (2003) · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[3]Gard, T. C.: Introduction to stochastic differential equations, (1988)
[4]Hasminskii, R. Z.: Stochastic stability of differential equations, Monogr. textb. Mech. solids fluids 7 (1980)
[5]Ji, C. Y.; Jiang, D. Q.; Shi, N. Z.: Analysis of a predator-prey model with modified Leslie-gower and Holling-type II schemes with stochastic perturbation, J. math. Anal. appl. 359, 482-498 (2009) · Zbl 1190.34064 · doi:10.1016/j.jmaa.2009.05.039
[6]Kliemann, W.: Recurrence and invariant measures for degenerate diffusions, Ann. probab. 15, 690-707 (1987) · Zbl 0625.60091 · doi:10.1214/aop/1176992166
[7]Mao, X.; Yuan, C.; Zou, J.: Stochastic differential delay equations of population dynamics, J. math. Anal. appl. 304, 296-320 (2005) · Zbl 1062.92055 · doi:10.1016/j.jmaa.2004.09.027
[8]Strang, G.: Linear algebra and its applications, (1988)
[9]Zhu, C.; Yin, G.: Asymptotic properties of hybrid diffusion systems, SIAM J. Control optim. 46, 1155-1179 (2007) · Zbl 1140.93045 · doi:10.1137/060649343