zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Statistical summability and approximation by de la Vallée-Poussin mean. (English) Zbl 1216.40003
The authors introduce two concepts of statistical λ-convergence and strongly λ q -convergence (0<q<) and give some relations between λ-statistical convergence and these newly defined concepts. They also prove a Korovkin type approximation theorem by using the newly defined summability method.

40A35Ideal and statistical convergence
41A36Approximation by positive operators
47A58Operator approximation theory
[1]Fast, H.: Sur la convergence statistique, Colloq. math. 2, 241-244 (1951) · Zbl 0044.33605
[2]Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique, Colloq. math. 2, 73-84 (1951)
[3]Mursaleen, M.: λ-statistical convergence, Math. slovaca 50, 111-115 (2000) · Zbl 0953.40002
[4]Leindler, L.: Über die de la vallée–pousinsche summierbarkeit allgemeiner orthogonalreihen, Acta math. Acad. sci. Hungar. 16, 375-387 (1965) · Zbl 0138.28802 · doi:10.1007/BF01904844
[5]Dirik, F.; Demirci, K.: Korovkin type approximation theorem for functions of two variables in statistical sense, Turkish J. Math. 33, 1-11 (2009)
[6]Doğru, O.; Örkcü, M.: Statistical approximation by a modification of q-Meyer–könig and zeller operators, Appl. math. Lett. 23, 261-266 (2010) · Zbl 1183.41013 · doi:10.1016/j.aml.2009.09.018
[7]Gadziev, A. D.; Orhan, C.: Some approximation theorems via statistical convergence, Rocky mountain J. Math. 32, 129-138 (2002) · Zbl 1039.41018 · doi:10.1216/rmjm/1030539612 · doi:http://math.la.asu.edu/~rmmc/rmj/vol32-1/CONT32-1/CONT32-1.html
[8]Gadziev, A. D.: The convergence problems for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P. Korovkin, Sov. math. Dokl. 15, 1433-1436 (1974) · Zbl 0312.41013
[9]P.P. Korovkin, Linear operators and the theory of approximation, India, Delhi, 1960.