zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings. (English) Zbl 1216.49018
Summary: We propose a very weak type of generalized distances called a weak τ-function and use it to weaken the assumptions about lower semicontinuity in existing versions of Ekeland’s variational principle and equivalent formulations.

49J53Set-valued and variational analysis
49J52Nonsmooth analysis (other weak concepts of optimality)
[1]Arutyunov A., Bobylev N., Korovin S.: One remark to Ekeland’s variational principle. Comp. Math. Appl. 34, 267–271 (1997) · Zbl 0884.49017 · doi:10.1016/S0898-1221(97)00128-4
[2]Attouch H., Riahi H.: Stability result for Ekeland’s ϵ-variational principle and cone extremal solutions. Math. Oper. Res. 18, 173–201 (1993) · Zbl 0779.49015 · doi:10.1287/moor.18.1.173
[3]Bao T.Q., Khanh P.Q.: Are several recent generalizations of Ekeland’s variational principle more general than the original principle?. Acta Math. Vietnam. 28, 345–350 (2003)
[4]Bao T.Q., Mordukhovich B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cyber. 36, 531–562 (2007)
[5]Bianchi M., Kassay G., Pini R.: Ekeland’s principle for vector equilibrium problems. Nonlin. Anal. 66, 1454–1464 (2007) · Zbl 1110.49007 · doi:10.1016/j.na.2006.02.003
[6]Borwein J.M., Preiss D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303, 517–527 (1987) · doi:10.1090/S0002-9947-1987-0902782-7
[7]Caristi J.: Fixed point theorem for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215, 241–251 (1976) · doi:10.1090/S0002-9947-1976-0394329-4
[8]Chen Y., Cho Y.J., Yang L.: Note on the results with lower semicontinuity. Bull. Korean Math. Soc. 39, 535–541 (2002) · Zbl 1040.49016 · doi:10.4134/BKMS.2002.39.4.535
[9]Daneš J.A.: A geometric theorem useful in nonlinear analysis. Bull. U.M.I. 6, 369–375 (1972)
[10]Daneš S., Hegedus M., Medvegyev P.: A general ordering and fixed-point principle in completed metric space. Acta Sci. Math. (Szeged). 46, 381–388 (1983)
[11]Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[12]El Amrouss A.R.: Variantes du principle variationnel d’Ekeland et applications. Revista Colombiana de Matemáticas. 40, 1–14 (2006)
[13]Göpfert A., Tammer Chr., Zălinescu C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlin. Anal. 39, 909–922 (2000) · Zbl 0997.49019 · doi:10.1016/S0362-546X(98)00255-7
[14]Ha T.X.D.: The Ekeland variational principle for set-valued maps involving coderivatives. J. Math. Anal. Appl. 286, 509–523 (2003) · Zbl 1029.49018 · doi:10.1016/S0022-247X(03)00482-7
[15]Ha T.X.D.: Some variants of Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124, 187–206 (2005) · Zbl 1064.49018 · doi:10.1007/s10957-004-6472-y
[16]Ha T.X.D.: Variants of the Ekeland variational principle for a set-valued map involving the Clarke normal cone. J. Math. Anal. Appl. 316, 346–356 (2006) · Zbl 1089.49031 · doi:10.1016/j.jmaa.2005.04.044
[17]Hamel A.H.: Phelp’s lemma, Danes’s drop theorem and Ekeland’s principle in locally convex topological vector spaces. Proc. Amer. Math. Soc. 10, 3025–3038 (2003) · Zbl 1033.49010 · doi:10.1090/S0002-9939-03-07066-7
[18]Hamel A.H.: Equivalents to Ekeland’s variational principle in uniform spaces. Nonlin. Anal. 62, 913–924 (2005) · Zbl 1093.49016 · doi:10.1016/j.na.2005.04.011
[19]Hamel A.H., Löhne A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlin. Convex Anal. 7, 19–37 (2006)
[20]Huang X.X.: New stability results for Ekeland’s ϵ-variational principle for vector-valued and set-valued maps. J. Math. Anal. Appl. 262, 12–23 (2001) · Zbl 1053.49019 · doi:10.1006/jmaa.2000.7357
[21]Huang X.X.: Stability results for Ekeland’s ϵ-variational principle for set-valued mappings. Optim. 51, 31–45 (2002) · Zbl 1029.49020 · doi:10.1080/02331930211982
[22]Kada O., Suzuki T., Takahashi W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japonica. 44, 381–391 (1996)
[23]Khanh P.Q.: On Caristi-Kirk’s Theorem and Ekeland’s variational principle for Pareto extrema. Bull. Polish Acad. Sci. Math. 37, 1–6 (1989)
[24]Khanh, P.Q., Quy, D.N.: On Ekeland’s variational principle for Pareto minima of set-valued mappings. J. Optim. Theory Appl., to appear (2010)
[25]Khanh, P.Q., Quy, D.N.: A generalized distance and Ekeland’s variational principle for vector functions. Nonlinear Anal. Onlinefirst (2010)
[26]Kuroiwa D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001) · Zbl 1042.49524 · doi:10.1016/S0362-546X(01)00274-7
[27]Li Y., Shi S.: A generalization of Ekeland’s ε -variational principle and its Borwein-Preiss smooth variant. J. Math. Anal. Appl. 246, 308–319 (2000) · Zbl 0979.49014 · doi:10.1006/jmaa.2000.6813
[28]Lin L.J., Du W.S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360–370 (2006) · Zbl 1101.49022 · doi:10.1016/j.jmaa.2005.10.005
[29]Lin L.J., Du W.S.: Some equivalent formulations of generalized Ekeland’s variational principle and their applications. Nonlin. Anal. 67, 187–199 (2007) · Zbl 1111.49013 · doi:10.1016/j.na.2006.05.006
[30]Loridan P.: ε -Solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984) · Zbl 0531.90091 · doi:10.1007/BF00936165
[31]Oetli W., Théra M.: Equivalents of Ekeland’s principle. Bull. Austr. Math. Soc. 48, 385–392 (1993) · Zbl 0793.54025 · doi:10.1017/S0004972700015847
[32]Park S.: On generalizations of the Ekeland-type variational principles. Nonlin. Anal. 39, 881–889 (2000) · Zbl 1044.49500 · doi:10.1016/S0362-546X(98)00253-3
[33]Penot J.P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlin. Anal. 10, 813–822 (1986) · Zbl 0612.49011 · doi:10.1016/0362-546X(86)90069-6
[34]Phelps R.R.: Support cones in Banach spaces and their applications. Adv. Math. 13, 1–19 (1974) · Zbl 0284.46015 · doi:10.1016/0001-8708(74)90062-0
[35]Qui J.H.: Local completeness, drop theorem and Ekeland’s variational principle. J. Math. Anal. Appl. 311, 23–39 (2005) · Zbl 1078.49023 · doi:10.1016/j.jmaa.2004.12.045
[36]Suzuki T.: Generalized distance and existence theorems in the complete metric space. J. Math. Anal. Appl. 253, 440–458 (2001) · Zbl 0983.54034 · doi:10.1006/jmaa.2000.7151
[37]Suzuki T.: Generalized Caristi’s fixed point theorems by Bae and others. J. Math. Anal. Appl. 302, 502–508 (2005) · Zbl 1059.54031 · doi:10.1016/j.jmaa.2004.08.019
[38]Takahashi W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Théra, M.A., Baillon, J.B. (eds) Fixed Point Theory and Applications, pp. 397–406. Longman Scientific and Technical, Essex (1991)
[39]Tataru D.: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345–392 (1992) · Zbl 0757.35034 · doi:10.1016/0022-247X(92)90256-D
[40]Valyi I.: A general maximality principle and a fixed-point theorem in uniform spaces. Periodica Math. Hung. 16, 127–134 (1985) · Zbl 0551.47025 · doi:10.1007/BF01857592
[41]Zabreiko P.P., Krasnoselski M.A.: Solvability of nonlinear operator equations. Functional Anal. Appl. 5, 206–208 (1971)