zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of Steffensen type methods with optimal order of convergence. (English) Zbl 1216.65055
Summary: A family of Steffensen type methods of fourth-order convergence for solving nonlinear smooth equations is suggested. In the proposed methods, a linear combination of divided differences is used to get a better approximation to the derivative of the given function. Each derivative-free member of the family requires only three evaluations of the given function per iteration. Therefore, this class of methods has efficiency index equal to 1.587. H. T. Kung and J. F. Traub [J. Assoc. Comput. Mach. 21, 643–651 (1974; Zbl 0289.65023)] conjectured that the order of convergence of any multipoint method without memory cannot exceed the bound 2 d-1 , where d is the number of functional evaluations per step. The new class of methods agrees with this conjecture for the case d=3. Numerical examples are presented to show the performance of the presented methods, on smooth and nonsmooth equations, and to compare them with others.
65H05Single nonlinear equations (numerical methods)
[1]Ortega, J. M.; Rheinboldt, W. G.: Iterative solutions of nonlinear equations in several variables, (1970) · Zbl 0241.65046
[2]Jain, P.: Steffensen type methods for solving nonlinear equations, Applied mathematics and computation 194, 527-533 (2007) · Zbl 1193.65063 · doi:10.1016/j.amc.2007.04.087
[3]Dehghan, M.; Hajarian, M.: An some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations, Journal of computational and applied mathematics 29, 19-30 (2010) · Zbl 1189.65091 · doi:10.1590/S1807-03022010000100002
[4]Ren, H.; Wu, Q.; Bi, W.: A class of two-step Steffensen type methods with fourth-order convergence, Applied mathematics and computation 209, 206-210 (2009) · Zbl 1166.65338 · doi:10.1016/j.amc.2008.12.039
[5]Zheng, Q.; Wang, J.; Zhao, P.; Zhang, L.: A Steffensen-like method and its higher-order variants, Applied mathematics and computation 214, 10-16 (2009) · Zbl 1179.65052 · doi:10.1016/j.amc.2009.03.053
[6]Feng, X.; He, Y.: High order oterative methods without derivatives for solving nonlinear equations, Applied mathematics and computation 186, 1617-1623 (2007) · Zbl 1119.65036 · doi:10.1016/j.amc.2006.08.070
[7]Ostrowski, A. M.: Solutions of equations and systems of equations, (1966)
[8]Kung, H. T.; Traub, J. F.: Optimal order of one-point and multi-point iteration, Applied mathematics and computation 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[9]Amat, S.; Busquier, S.: On a Steffensen’s type method and its behavior for semismooth equations, Applied mathematics and computation 177, 819-823 (2006) · Zbl 1096.65047 · doi:10.1016/j.amc.2005.11.032
[10]Potra, F. A.; Qi, L.; Sun, D.: Secant methods for semismooth equations, Numerical mathematics 80, 305-324 (1998) · Zbl 0914.65051 · doi:10.1007/s002110050369
[11]Cordero, A.; Torregrosa, J. R.: Variants of Newton’s method using fifth-order quadrature formulas, Applied mathematics and computation 190, 686-698 (2007) · Zbl 1122.65350 · doi:10.1016/j.amc.2007.01.062
[12]Amat, S.; Busquier, S.: On a higher order secant methods, Applied mathematics and computation 141, 321-329 (2003) · Zbl 1035.65057 · doi:10.1016/S0096-3003(02)00257-6