zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical analysis of a five-dimensioned chemostat model with impulsive diffusion and pulse input environmental toxicant. (English) Zbl 1216.92062
Summary: We consider a five-dimensioned chemostat model with impulsive diffusion and pulse input environmental toxicant. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution. Further, it is globally asymptotically stable. The permanence condition of the investigated system is also analyzed by the theory of impulsive differential equations. Our results reveal that the chemostat environmental changes play an important role on the outcome of the chemostat.
MSC:
92D40Ecology
37N25Dynamical systems in biology
39A12Discrete version of topics in analysis
34A37Differential equations with impulses
34C25Periodic solutions of ODE
References:
[1]Smith, H.; Waltman, P.: Theory of chemostat, (1995)
[2]Smith, H.; Waltman, P.: Perturbation of a globally stable steady state, Proc am math soc 127, No. 2, 447-453 (1999) · Zbl 0924.58087 · doi:10.1090/S0002-9939-99-04768-1
[3]Kuang, Y.: Delay differential equation with application in population dynamics, (1993) · Zbl 0777.34002
[4]Freedman, H. I.; So, J. W. H.; Waltman, P.: Chemostat competition with delays, Biomedical modelling and simulation, 171-173 (1989)
[5]Ellermeyer, S. F.: Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth, SIAM J appl math 154, 456-465 (1994) · Zbl 0794.92023 · doi:10.1137/S003613999222522X
[6]Caltagirone, L. E.; Doutt, R. L.: Global behavior of an SEIRS epidemic model with delays, the history of the vedalia beetle importation to California and its impact on the development of biological control, Ann rev entomol 34, 1-16 (1989)
[7]Hsu, S. B.; Waltman, P.; Ellermeyer, S. F.: A remark on the global asymptotic stability of a dynamical system modeling two species competition, Hiroshima math J 24, 435-445 (1994) · Zbl 0806.92016
[8]Ellermeyer; Hendrix; Ghoochan: A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria, J theor biol 222, 485-494 (2003)
[9]Bush, A. W.; Cook, A. E.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, J theor biol 63, 385-395 (1975)
[10]Hass, C. N.: Application of predator – prey models to disinfection, J water pollut control fed 53, 378-386 (1981)
[11]Hsu, S. B.; Waltman, P.: Competition in the chemostat when one competitor produces a toxin, Jpn J ind appl math 15, 471-490 (1998) · Zbl 0982.92035 · doi:10.1007/BF03167323
[12]Jenson, A. L.; Marshall, J. S.: Application of surplus production model to access environmental impacts in exploited populations of daphnia pluex in the laboratory, Environ pollut (Ser A) 28, 273-280 (1982)
[13]De Luna, J. T.; Hallam, T. G.: Effects of toxicants on population: A qualitative approach. IV: resource-consumer-toxicants model, Ecol model 35, 249-273 (1987)
[14]Dubey, B.: Modelling the effect of toxicant on forestry resources, Indian J pure appl math 28, 1-12 (1997) · Zbl 0870.92020
[15]Freedman, H. I.; Shukla, J. B.: Models for the effect of toxicant in a single-species and predator – prey systems, J math biol 30, 15-30 (1991) · Zbl 0825.92125 · doi:10.1007/BF00168004
[16]Hallam, T. G.; Clark, C. E.; Jordan, G. S.: Effects of toxicant on population: a qualitative approach II. First order kinetics, J math biol 18, 25-37 (1983) · Zbl 0548.92019 · doi:10.1007/BF00275908
[17]Zhang, B. G.: Population’s ecological mathematics modeling, (1990)
[18]Hallam, T. G.; Clark, C. E.; Lassider, R. R.: Effects of toxicant on population: a qualitative approach I. Equilibrium environmental exposure, Ecol model 18, 291-340 (1983) · Zbl 0548.92018
[19]Liu, B.; Chen, L. S.; Zhang, Y. J.: The effects of impulsive toxicant input on a population in a polluted environment, J biol syst 11, 265-287 (2003) · Zbl 1041.92044 · doi:10.1142/S0218339003000907
[20]Levin, S. A.; Segel, L. A.; Adler, F. R.: Diffuse coevolution in plant-herbivore communities, Theor popul biol 37, No. 1, 171-191 (1990) · Zbl 0689.92017 · doi:10.1016/0040-5809(90)90034-S
[21]Mimura, M.; Terman, D.; Tsujikawa, T.: Nonlocal advection effect on bistable reaction – diffusion equations, Stud math appl 18, 507-542 (1986) · Zbl 0631.92013
[22]Okubo, A.; Andreasen, V.; Mitchell, J.: Diffusivity in chaos-induced turbulent diffusion, Phys lett A 105, 117-120 (1984)
[23]Freedman, H. I.; Ruan, S. G.: Uniform persistence in functional differential equations, J differ eqn 115, No. 1, 173-192 (1995) · Zbl 0814.34064 · doi:10.1006/jdeq.1995.1011
[24]Ruan, S. G.: Oscillations in plankton models with nutrient recycling, J theor biol 208, No. 1, 15-26 (2002)
[25]Bainov, D.; Simeonov, P.: Impulsive differential equations: periodic solutions and applications, Longman 66 (1993) · Zbl 0815.34001
[26]Jiao, J. J.; Chen, L. S.: Global attractivity of a stage-structure variable coefficients predator – prey system with time delay and impulsive perturbations on predators, Int J biomath 1, 197-208 (2008) · Zbl 1155.92355 · doi:10.1142/S1793524508000163
[27]Jiao, J. J.; Chen, L. S.; Cai, S. H.: An SEIRS epidemic model with two delays and pulse vaccination, J syst sci complexity 28, No. 4, 385-394 (2008)
[28]Jiao, J. J.; Chen, L. S.: Dynamical analysis of a chemostat model with delayed response in growth and pulse input in polluted environment, J math chem 46, No. 2, 502-513 (2009) · Zbl 1196.92041 · doi:10.1007/s10910-008-9474-4