[1] | Ström, K. J. å: Introduction to stochastic control theory, (1970) |

[2] | Ström, K. J. å; Wittenmark, B.: Self-tuning controllers based on pole-zero placement, IEE Proceedings 127, No. 3, 120-130 (1980) |

[3] | Caughey, T. K.: Nonlinear theory of random vibrations, Advances in applied mechanics 11, 209-253 (1971) |

[4] | Crespo, L. G.; Sun, J. Q.: Non-linear stochastic control via stationary response design, Probabilistic engineering mechanics 18, 79-86 (2003) |

[5] | Forbes, M.G., Forbes, J.F., & Guay, M. (2003a). Regulatory control design for stochastic processes: shaping the probability density function. In Proceedings of the American Control Conference. Vol. 5. Denver (pp. 3998–4003). |

[6] | Forbes, M. G., Forbes, J. F., & Guay, M. (2003b). Control design for discretetime stochastic nonlinear processes with a nonquadratic performance objective. In Proceedings of the 42nd IEEE Conference on Decision and Control. Vol. 4. Maui, Hawaii, USA (pp. 4243–4248). |

[7] | Forbes, M. G.; Guay, M.; Forbes, J. F.: Control design for first-order processes: shaping the probability density of the process state, Journal of process control 14, 399-410 (2004) |

[8] | Forbes, M. G., Guay, M., & Forbes, J. F. (2004b). Probabilistic control design for continuous-time stochastic nonlinear systems - A PDF-shaping approach. In International Symposium on Intelligent Control, IEEE. |

[9] | Goodwin, G. C.; Sin, K. S.: Adaptive filtering, prediction and control, (1984) |

[10] | Guo, L.; Wang, H.: PID controller design for output pdfs of stochastic systems using linear matrix inequalities, IEEE transactions on systems, man and cybernetics-part B 35, 65-71 (2005) |

[11] | Guo, L.; Wang, H.; Wang, A. P.: Optimal probability density function control for NARMAX stochastic systems, Automatica 44, No. 7, 1904-1911 (2008) · Zbl 1149.93350 · doi:10.1016/j.automatica.2007.11.028 |

[12] | Karny, M.: Towards fully probabilistic control design, Automatica 32, 1719-1722 (1996) · Zbl 0868.93022 · doi:10.1016/S0005-1098(96)80009-4 |

[13] | Lin, Y. K.; Cai, G. Q.: Probability structural dynamics: advanced theory and applications, (1995) |

[14] | Lu, J. B.; Skelton, R. R.: Covariance control using closed-loop modelling for structures, Earthquake engineering structural dynamics 27, 1367-1383 (1998) |

[15] | Skelton, R. E.; Iwasaki, T.; Grigoriadis, K. M.: A unified algebraic approach to linear control design, (1998) |

[16] | Wang, H.: Control of conditional output probability density functions for general nonlinear and non-Gaussian dynamic stochastic systems, IEE Proceedings-control theory and applications 150, 55-60 (2003) |

[17] | Wojtkiewicz, S. F.; Bergman, L. A.: Moment specification algorithm for control of nonlinear systems driven by Gaussian white noise, Nonlinear dynamics 24, No. 1, 17-30 (2001) · Zbl 0992.74053 · doi:10.1023/A:1026575320113 |

[18] | Yang, Y.; Guo, L.; Wang, H.: Constrained PI tracking control for output probability distributions based on two-step neural networks, IEEE transactions on circuits systems part I 56, No. 7, 1416-1426 (2009) |

[19] | Zhu, W. Q.: Nonlinear stochastic dynamics and control in Hamiltonian formulation, ASME applied mechanics reviews 59, 230-248 (2006) |

[20] | Zhu, W. Q.; Cai, G. Q.; Lin, Y. K.: On exact stationary solutions of stochastically perturbed Hamiltonian systems, Probabilistic engineering mechanics 5, 84-87 (1990) |

[21] | Zhu, W. Q.; Yang, Y. Q.: Exactly stationary solutions of stochastically excited and dissipated integrable Hamiltonian systems, Journal of applied mechanics-transactions of ASME 63, 493-500 (1996) · Zbl 0876.58012 · doi:10.1115/1.2788895 |