zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On operations of soft sets. (English) Zbl 1217.03040
Summary: Soft set theory, proposed by Molodtsov, has been regarded as an effective mathematical tool to deal with uncertainties. In this paper, first we prove that certain De Morgan’s law hold in soft set theory with respect to different operations on soft sets. Then, we discuss the basic properties of operations on soft sets such as intersection, extended intersection, restricted union and restricted difference. Moreover, we illustrate their interconnections between each other. Also we define the notion of restricted symmetric difference of soft sets and investigate its properties. The main purpose of this paper is to extend the theoretical aspect of operations on soft sets.
MSC:
03E72Fuzzy set theory
References:
[1]Zadeh, L. A.: Fuzzy sets, Inform. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2]Zadeh, L. A.: Toward a generalized theory of uncertainty (GTU)-an outline, Inform. sci. 172, 1-40 (2005) · Zbl 1074.94021 · doi:10.1016/j.ins.2005.01.017
[3]Pawlak, Z.: Rough sets, Int. J. Inform. comput. Sci. 11, 341-356 (1982)
[4]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Inform. sci. 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[5]Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE trans. Syst. man cybern. 23, No. 2, 610-614 (1993)
[6]Gorzalzany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[7]Molodtsov, D.: Soft set theory-first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[8]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[9]Pei, D.; Miao, D.: From soft sets to information systems, Proceedings of granular computing, 617-621 (2005)
[10]Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.: On some new operations in soft set theory, Comput. math. Appl. 57, No. 9, 1547-1553 (2009)
[11]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[12]Molodtsov, D. A.; Leonov, V. Yu.; Kovkov, D. V.: Soft sets technique and its application, Nech. siste. Myakie vychisleniya 1/1, 8-39 (2006)
[13]Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowl.-based syst. 21, 941-945 (2008)
[14]Çagm̃an, N.; Enginoğlu, S.: Soft set theory and uni-int decision making, Eur. J. Oper. res. 207, 848-855 (2010) · Zbl 1205.91049 · doi:10.1016/j.ejor.2010.05.004
[15]Çağman, N.; Enginoğlu, S.: Soft matrix theory and its decision making, Comput. math. Appl. 59, 3308-3314 (2010) · Zbl 1198.15021 · doi:10.1016/j.camwa.2010.03.015
[16]Aktaş, H.; Çagm̃an, N.: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[17]Jun, Y. B.: Soft BCK/BCI-algebras, Comput. math. Appl. 56, 1408-1413 (2008)
[18]Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. sci. 178, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[19]Feng, F.; Jun, Y. B.; Zhao, X.: Soft semirings, Comput. math. Appl. 56, 2621-2628 (2008)
[20]Jun, Y. B.; Lee, K. J.; Zhan, J.: Soft p-ideals of soft BCI-algebras, Comput. math. Appl. 58, 2060-2068 (2009) · Zbl 1189.06012 · doi:10.1016/j.camwa.2009.07.072
[21]Acar, U.; Koyuncu, F.; Tanay, B.: Soft sets and soft rings, Comput. math. Appl. 59, 3458-3463 (2010) · Zbl 1197.03048 · doi:10.1016/j.camwa.2010.03.034
[22]Kazancı, O.; Yılmaz, Ş.; Yamak, S.: Soft sets and soft BCH-algebras, Hacet J. Math. stat. 39, No. 2, 205-217 (2010) · Zbl 1203.06022
[23]A. Sezgin, A.O. Atagün, E. Aygün, A note on soft near-rings and idealistic soft near-rings, Filomat (in press).
[24]A. Sezgin, A.O. Atagün, A detailed note on soft set theory (submitted for publication).
[25]A.O. Atagün, A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl., doi:10.1016/j.camwa.2010.12.005.