zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Soft substructures of rings, fields and modules. (English) Zbl 1217.16041
Summary: Soft set theory, proposed by Molodtsov, has been regarded as an effective mathematical tool to deal with uncertainties. In this paper, we introduce and study soft subrings and soft ideals of a ring by using Molodtsov’s definition of the soft sets. Moreover, we introduce soft subfields of a field and soft submodule of a left R-module. Some related properties about soft substructures of rings, fields and modules are investigated and illustrated by many examples.
MSC:
16Y99Generalizations of associative rings and algebras
03E72Fuzzy set theory
References:
[1]Zadeh, L. A.: Fuzzy sets, Inform. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2]Zadeh, L. A.: Toward a generalized theory of uncertainty (GTU)-an outline, Inform. sci. 172, 1-40 (2005) · Zbl 1074.94021 · doi:10.1016/j.ins.2005.01.017
[3]Pawlak, Z.: Rough sets, Int. J. Inform. comput. Sci. 11, 341-356 (1982)
[4]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Inform. sci. 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[5]Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE trans. Syst. man cybern. 23, No. 2, 610-614 (1993)
[6]Gorzalzany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[7]Molodtsov, D.: Soft set theory-first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[8]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[9]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[10]Aktaş, H.; Çagm̃an, N.: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[11]Aktaş, H.; Çagm̃an, N.: Soft sets and soft groups, Inform. sci. 179, No. 3, 338 (2009) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[12]Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.; Shabir, M.: On some new operations in soft set theory, Comput. math. Appl. 57, No. 9, 1547-1553 (2009) · Zbl 1186.03068 · doi:10.1016/j.camwa.2008.11.009
[13]Feng, F.; Jun, Y. B.; Zhao, X.: Soft semirings, Comput. math. Appl. 56, 2621-2628 (2008)
[14]Çagm̃an, N.; Enginogl̃u, S.: Soft matrix theory and its decision making, Comput. math. Appl. 59, No. 10, 3308-3314 (2010) · Zbl 1198.15021 · doi:10.1016/j.camwa.2010.03.015
[15]Acar, U.; Koyuncu, F.; Tanay, B.: Soft sets and soft rings, Comput. math. Appl. 59, No. 11, 3458-3463 (2010) · Zbl 1197.03048 · doi:10.1016/j.camwa.2010.03.034
[16]A.O. Atagün, A. Sezgin, Soft near-rings (submitted for publication).
[17]A. Sezgin, A.O. Atagün, E. Aygün, A note on soft near-rings and idealistic soft near-rings, Filomat (in press).
[18]Rosenfeld, A.: Fuzzy groups, J. math. Anal. appl. 35, 512-517 (1971) · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[19]Abou-Zaid, S.: On fuzzy subnear-rings and ideals, Fuzzy sets and systems 44, 139-146 (1991) · Zbl 0772.16018 · doi:10.1016/0165-0114(91)90039-S
[20]Davvaz, B.: Fuzzy ideals of near-rings with interval-valued membership functions, J. sci. Islam. repub. Iran 12, 171-175 (2001)
[21]Davvaz, B.: (ϵ,ϵq)-fuzzy subnear-rings and ideals, Soft comput. 10, 206-211 (2006) · Zbl 1084.16040 · doi:10.1007/s00500-005-0472-1
[22]Kim, K. H.; Jun, Y. B.: On fuzzy ideals of near-rings, Bull. korean math. Soc. 33, 593-601 (1996)
[23]Saikia, H. K.; Barthakur, L. K.: On fuzzy N-subgroups of fuzzy ideals of near-rings and near-ring groups, J. fuzzy math. 11, 567-580 (2003) · Zbl 1060.16052
[24]A.O. Atagün, Soft subnear-rings, soft ideals and soft N-subgroups of near-rings (submitted for publication).
[25]Biswas, R.; Nanda, S.: Rough groups and rough subgroups, Bull. Pol acad. Sci. math. 42, 251-254 (1994) · Zbl 0834.68102
[26]Bonikowaski, Z.: Algebraic structures of rough sets, (1995)
[27]Iwinski, T.: Algebraic approach of rough sets, Bull. Pol acad. Sci. math. 35, 673-683 (1987) · Zbl 0639.68125
[28]Feng, F.; Liu, X. Y.; Leoreanu-Fotea, V.; Jun, Y. B.: Soft sets and soft rough sets, Inform. sci. (2010)
[29]Feng, F.; Li, C. X.; Davvaz, B.; Ali, M. Irfan: Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft comput. 14, 899-911 (2010) · Zbl 1201.03046 · doi:10.1007/s00500-009-0465-6