zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of a solution for the fractional differential equation with nonlinear boundary conditions. (English) Zbl 1217.34011
Summary: Using the method of upper and lower solutions and its associated monotone iterative, we present an existence theorem for a nonlinear fractional differential equation with nonlinear boundary conditions.
34A08Fractional differential equations
34B15Nonlinear boundary value problems for ODE
45J05Integro-ordinary differential equations
[1]Kilbsa, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[2]Al-Bassam, M. A.: Some existence theorems on differential equations of generalized order, J. reine angew. Math. 218, No. 1, 70-78 (1965) · Zbl 0156.30804 · doi:10.1515/crll.1965.218.70 · doi:crelle:GDZPPN002181150
[3]Franco, Daniel; Nieo, Juan J.; O’regan, Donal: Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions, Appl. math. Comput. 153, 793-802 (2004) · Zbl 1058.34015 · doi:10.1016/S0096-3003(03)00678-7
[4]Delbosco, D.; Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation, J. math. Anal. appl. 204, No. 2, 609-625 (1996) · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456
[5]Mcrae, F. A.: Monotone iterative technique and existence results for fractional differential equations, Nonlinear anal. 71, No. 12, 6093-6096 (2009)
[6]Pitcher, E.; Sewell, W. E.: Existence theorems for solutions of differential equations of non-integral order, Bull. amer. Math. soc. 44, No. 2, 100-107 (1938) · Zbl 0018.30701 · doi:10.1090/S0002-9904-1938-06695-5
[7]Zhang, Shuqin: Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives, Nonlinear anal. 71, 2087-2093 (2009) · Zbl 1172.26307 · doi:10.1016/j.na.2009.01.043
[8]Bhaskar, T. G.; Lakshmikantham, V.; Devi, J. V.: Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear anal. 66, 2237-2242 (2007) · Zbl 1121.34065 · doi:10.1016/j.na.2006.03.013
[9]Zhang, Shuqin: The existence of a positive solution for a nonlinear fractional differential equation, J. math. Anal. appl. 252, 804-812 (2000) · Zbl 0972.34004 · doi:10.1006/jmaa.2000.7123
[10]Zhang, Shuqin: Positive solution for some class of nonlinear fractional differential equation, J. math. Anal. appl. 278, No. 1, 136-148 (2003) · Zbl 1026.34008 · doi:10.1016/S0022-247X(02)00583-8