zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global synchronization criteria for two Lorenz-Stenflo systems via single-variable substitution control. (English) Zbl 1217.34086
Authors’ abstract: The global synchronization of chaotic Lorenz-Stenflo systems via variable substitution control is studied. First, a master-slave synchronization scheme with variable substitution control is constructed. Based on this scheme, sufficient criteria for the global chaos synchronization of master and slave Lorenz-Stenflo systems via various single-variable coupling are derived and formulated in the form of algebra. Numerical examples are provided to verify the effectiveness of the criteria.
34H10Chaos control (ODE)
[1]Stenflo, L.: Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys. Scr. 53, 83–84 (1996) · doi:10.1088/0031-8949/53/1/015
[2]Vincent, U.E.: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos Solitons Fractals 37, 1065–1075 (2008) · Zbl 1153.37359 · doi:10.1016/j.chaos.2006.10.005
[3]Liu, Z.: The first integrals of nonlinear acoustic gravity wave equations. Phys. Scr. 61, 526 (2000) · doi:10.1238/Physica.Regular.061a00526
[4]Zhou, C., Lai, C.H., Yu, M.Y.: Bifurcation behavior of the generalized Lorenz equations at large rotation numbers. J. Math. Phys. 38(10), 5225–5239 (1997) · Zbl 0897.76038 · doi:10.1063/1.531938
[5]Banerjee, S., Saha, P., Chowdhury, A.R.: Chaotic scenario in the Stenflo equations. Phys. Scr. 63, 177–180 (2001) · Zbl 1115.37366 · doi:10.1238/Physica.Regular.063a00177
[6]Chen, Y., Wu, X., Gui, Z.: Global chaos synchronization of the Lorenz–Stenflo systems via Linear state error feedback control. Int. Conf. Intell. Comput. Tech. Auto. 1, 354–358 (2008)
[7]Banerjee, S., Saha, P., Chowdhury, A.R.: On the application of adaptive control and phase synchronization in non-linear fluid dynamics. Int. J. Non-Linear Mech. 39, 25–31 (2004) · Zbl 1225.76137 · doi:10.1016/S0020-7462(02)00125-7
[8]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[9]Lu, J.A., Wu, X.Q., Lü, J.H.: Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305, 365–370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[10]Agiza, H.N.: Chaos synchronization of Lü dynamical system. Nonlinear Anal. 58, 11–20 (2004) · Zbl 1057.34042 · doi:10.1016/j.na.2004.04.002
[11]Liao, X., Chen, G., Wang, H.O.: On global synchronization of chaotic systems. In: Proc. Am. Control. Conf., vols. 8–10, pp. 2255–2259 (2002)
[12]Elabbasy, E.M., Agiza, H.N., EI-Dessoky, M.M.: Synchronization of modified Chen system. Int. J. Bifurc. Chaos 14, 3969–3979 (2004) · Zbl 1090.37516 · doi:10.1142/S0218127404011740
[13]Wu, X., Zhao, Y., Zhou, S.: Lag synchronization of Lur’e systems via replacing variables control. Int. J. Bifurc. Chaos 15, 617–635 (2005) · Zbl 1079.93019 · doi:10.1142/S021812740501220X
[14]Wu, X., Zhao, Y., Huang, X.H.: Some new criteria for lag synchronization of chaotic Lur’e systems by replacing variables control. J. Control. Theory Appl. 3, 259–266 (2004) · Zbl 1134.93035 · doi:10.1007/s11768-004-0007-9
[15]Wu, X., Wang, M.H.: Robust synchronization of chaotic Lur’e systems via replacing variables control. Int. J. Bifurc. Chaos 16, 3421–3433 (2006) · Zbl 1114.93089 · doi:10.1142/S0218127406016914
[16]Kakmeni, F.M., Bowong, S., Tchawous, C., Kaptouom, E.: Chaos control and synchronization of a Φ6-Van der Pol oscillator. Phys. Lett. A 332, 305–323 (2004) · Zbl 1118.81375 · doi:10.1016/j.physleta.2004.01.016
[17]Yu, Y., Zhang, S.: Adaptive backstepping synchronization of uncertain chaotic system. Chaos Solitons Fractals 21, 643–649 (2004) · Zbl 1062.34053 · doi:10.1016/j.chaos.2003.12.067
[18]Cai, J., Wu, X., Chen, S.: Synchronization criteria for non-autonomous chaotic systems via sinusoidal state error feedback control. Phys. Scr. 75, 379–387 (2007) · Zbl 1130.93361 · doi:10.1088/0031-8949/75/3/025
[19]Curran, P.F., Chua, L.O.: Absolute stability theory and the synchronization problem. Int. J. Bifurc. Chaos 7, 1375–1382 (1997) · Zbl 0910.34054 · doi:10.1142/S0218127497001096
[20]Slotine, J.E., Li, W.: Applied Nonlinear Control. China Machine Press, Beijing (2004)