zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays. (English) Zbl 1217.34116
Summary: A class of bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time delay in the leakage term, discrete and unbounded distributed delays is formulated to study the global asymptotic stability. This approach is based on the Lyapunov-Krasovskii functional with free-weighting matrices. Using linear matrix inequality (LMI), a new set of stability criteria for BAM FCNNs with time delay in the leakage term, discrete and unbounded distributed delays is obtained. Also, the stability behavior of BAM FCNNs is very sensitive to the time delay in the leakage term. In the absence of a leakage term, a new stability criteria is also derived by employing a Lyapunov-Krasovskii functional and using the LMI approach. Our results establish a new set of stability criteria for BAM FCNNs with discrete and unbounded distributed delays. Numerical examples are provided to illustrate the effectiveness of the developed techniques.
MSC:
34K20Stability theory of functional-differential equations
34K36Fuzzy functional-differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE transactions on circuits and systems 35, No. 10, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[2]Chua, L. O.; Yang, L.: Cellular neural networks: applications, IEEE transactions on circuits and systems 35, No. 10, 1273-1290 (1988)
[3]T. Yang, L.B. Yang, C.W. Wu, L.O. Chua, Fuzzy cellular neural networks: theory, in: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, 1996, pp. 181–186.
[4]T. Yang, L.B. Yang, C.W. Wu, L.O. Chua, Fuzzy cellular neural networks: applications, in: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, 1996, pp. 225–230.
[5]Wang, S.; Fu, D.; Xu, M.; Hu, D.: Advanced fuzzy cellular neural network: application to CT liver images, Artificial intelligence in medicine 39, 65-77 (2007)
[6]Wang, S.; Korris, F. L.; Fu, D. Chung: Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection, Neurocomputing 70, 1348-1359 (2007)
[7]Huang, T.: Exponential stability of fuzzy cellular neural networks with distributed delay, Physics letters A 351, 48-52 (2006)
[8]Huang, T.: Exponential stability of delayed fuzzy cellular neural networks with diffusion, Chaos solitons and fractals 31, 658-664 (2007) · Zbl 1138.35414 · doi:10.1016/j.chaos.2005.10.015
[9]Liu, Y.; Tang, W.: Exponential stability of fuzzy cellular neural networks with constant and time-varying delays, Physics letters A 323, 224-233 (2004) · Zbl 1118.81400 · doi:10.1016/j.physleta.2004.01.064
[10]Song, Q.; Cao, J.: Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, Journal of the franklin institute 345, 39-59 (2007) · Zbl 1167.93369 · doi:10.1016/j.jfranklin.2007.06.001
[11]Yang, T.; Yang, L. B.: Global stability of fuzzy cellular neural network, IEEE transactions on circuits and systems I 43, No. 10, 880-883 (1996)
[12]Tan, M.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays, Neural process letters 31, 147-157 (2010)
[13]Kosko, B.: A dynamical system approach machine intelligence, Neural networks and fuzzy systems, 38-108 (1992)
[14]Kosko, B.: Adaptive bi-directional associative memories, Applied optics 26, No. 23, 4947-4960 (1987)
[15]Kosko, B.: Bi-directional associative memories, IEEE transactions on systems, man and cybernetics 18, 49-60 (1988)
[16]Singh, Y. P.; Yadav, V. S.; Gupta, A.; Khare, A.: Bi-directional associative memory neural network method in the character recognition, Journal of theoretical and applied information technology, 382-386 (2005)
[17]Huang, X.; Cao, J.; Huang, D.: LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks, Chaos, solitons and fractals 24, 885-898 (2005) · Zbl 1071.82538 · doi:10.1016/j.chaos.2004.09.037
[18]Sheng, L.; Yang, H.: Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays, Chaos, solitons and fractals 40, 2102-2113 (2009) · Zbl 1198.93165 · doi:10.1016/j.chaos.2007.09.098
[19]Balasubramaniam, P.; Rakkiyappan, R.; Sathy, R.: Delay dependent stability results for fuzzy BAM neural networks with Markovian jumping parameters, Expert systems with applications 38, 121-130 (2011)
[20]Arik, S.: Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays, IEEE transactions on neural networks 16, No. 3, 580-586 (2005)
[21]Cao, J.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE transactions neural networks 13, No. 2, 457-463 (2002)
[22]Li, Y.: Global exponential stability of BAM neural networks with delays and impulses, Chaos, solitons and fractals 24, No. 1, 279-285 (2005) · Zbl 1099.68085 · doi:10.1016/j.chaos.2004.09.027
[23]Cao, J.; Dong, M.: Exponential stability of delayed bidirectional associative memory networks, Application of mathematical computation 135, 105-112 (2003) · Zbl 1030.34073 · doi:10.1016/S0096-3003(01)00315-0
[24]Feng, C.; Plamondon, R.: Stability analysis of bidirectional associative memory networks with time delays, IEEE transactions on neural networks 14, 1560-1565 (2003)
[25]Lou, X.; Cui, B.: Global asymptotic stability of delay BAM neural networks with impulses, Chaos, solitons and fractals 29, No. 4, 1023-1031 (2006) · Zbl 1142.34376 · doi:10.1016/j.chaos.2005.08.125
[26]Park, Ju H.; Lee, S. M.; Kwon, O. M.: On exponential stability of bidirectional associative memory neural networks with time-varying delays, Chaos, solitons and fractals 39, No. 3, 1083-1091 (2009) · Zbl 1197.34140 · doi:10.1016/j.chaos.2007.05.003
[27]Park, Ju H.; Kwon, O. M.: Delay-dependent stability criterion for bidirectional associative memory neural networks with interval time-varying delays, Modern physics letters B(SCI) 23, No. 1, 35-46 (2009) · Zbl 1214.37059 · doi:10.1142/S0217984909017807
[28]Li, K.: Impulsive effect on global exponential stability of BAM fuzzy cellular neural networks with time-varying delays, International journal of systems science 41, No. 2, 131-142 (2010)
[29]Kosko, B.: Neural networks and fuzzy systems, (1992) · Zbl 0755.94024
[30]Gopalsamy, K.: Leakage delays in BAM, Journal of mathematical analysis and applications 325, 1117-1132 (2007) · Zbl 1116.34058 · doi:10.1016/j.jmaa.2006.02.039
[31]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[32]Peng, S.: Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms, Nonlinear analysis: real world applications 11, 2141-2151 (2010)
[33]Li, X.; Fu, X.; Balasubramaniam, P.; Rakkiyappan, R.: Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations, Nonlinear analysis: real world applications 11, 4092-4108 (2010) · Zbl 1205.34108 · doi:10.1016/j.nonrwa.2010.03.014
[34]Li, X.; Cao, J.: Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity 23, 1709-1726 (2010) · Zbl 1196.82102 · doi:10.1088/0951-7715/23/7/010
[35]Guo, D.: Nonlinear functional analysis, (1985)
[36]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)
[37]Liu, Z. W.; Zhang, H. G.; Wang, Z. S.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays, Neurocomputing 72, No. 4–6, 1056-1064 (2009)
[38]K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of the 39th IEEE Conference on Decision and Control Sydney, Australia, December, 2000, pp. 2805–2810.
[39]Li, T.; Fei, S.; Zhu, Q.: Design of exponential state estimator for neural networks with distributed delays, Nonlinear analysis: real world applications 10, 1229-1242 (2009) · Zbl 1167.93318 · doi:10.1016/j.nonrwa.2007.10.017
[40]Souza, F. O.; Palhares, R. M.; Ekel, P. Y.: Asymptotic stability analysis in uncertain multi-delayed state neural networks via Lyapunov–Krasovskiĭ theory, Mathematical and computer modelling 45, No. 11–12, 1350-1362 (2007) · Zbl 1129.93487 · doi:10.1016/j.mcm.2006.09.021
[41]Souza, F. O.; Palhares, R. M.; Ekel, P. Y.: Novel stability criteria for uncertain delayed Cohen–Grossberg neural networks using discretized Lyapunov functional, Chaos, solitons and fractals 41, No. 5, 2387-2393 (2009) · Zbl 1198.34164 · doi:10.1016/j.chaos.2008.09.009
[42]Souza, F. O.; Palhares, R. M.; Ekel, P. Y.: Improved asymptotic stability analysis for uncertain delayed state neural networks, Chaos, solitons and fractals 39, No. 1, 240-247 (2009) · Zbl 1197.93137 · doi:10.1016/j.chaos.2007.01.110