zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The G ' G method and 1-soliton solution of the Davey-Stewartson equation. (English) Zbl 1217.35171
Summary: This paper studies the Davey-Stewartson equation. The G ' G method is applied to carry out the integration of this equation. Subsequently, using the ansatz method this equation is integrated in (1+2) dimensions with power law nonlinearity.
MSC:
35Q55NLS-like (nonlinear Schrödinger) equations
35C08Soliton solutions of PDE
References:
[1]Bekir, A.; Cevikel, A. C.: New solitons and periodic solutions for nonlinear physical models in mathematical physics, Nonlinear analysis: real world applications 11, No. 4, 3275-3285 (2010) · Zbl 1196.35178 · doi:10.1016/j.nonrwa.2009.10.015
[2]Caixia, S.; Boling, G.: Ill-posedness for the nonlinear Davey–Stewartson equation, Acta Mathematica scientia 28, No. 1, 117-127 (2008) · Zbl 1150.35068 · doi:10.1016/S0252-9602(08)60012-0
[3]Eden, A.; Erbay, H. A.; Muslu, G. M.: Two remarks on a generalized Davey–Stewartson system, Nonlinear analysis: theory, methods and applications 64, No. 5, 979-986 (2006) · Zbl 1091.35088 · doi:10.1016/j.na.2005.05.052
[4]Eden, A.; Erbay, H. A.; Muslu, G. M.: Closing the gap in the purely elliptic generalized Davey–Stewartson system, Nonlinear analysis: theory, methods and applications 69, No. 8, 2575-2582 (2008) · Zbl 1152.35492 · doi:10.1016/j.na.2007.08.034
[5]Eden, A.; Topaloglu, I. A.: Standing waves for a generalized Davey–Stewartson system: revisited, Applied mathematics letters 21, No. 4, 342-347 (2008) · Zbl 1165.35458 · doi:10.1016/j.aml.2007.04.003
[6]Guo, C.; Cui, S.: A note on the Cauchy problem of the generalized Davey–Stewartson equations, Applied mathematics and computation 215, No. 6, 2262-2268 (2009) · Zbl 1181.35261 · doi:10.1016/j.amc.2009.08.038
[7]Jun, Z.; Bo-Ling, G.; Shou-Feng, S.: Homoclinic orbits of the Davey–Stewartson equation, Applied mathematics and mechanics 26, No. 2, 139-141 (2005) · Zbl 1144.76306 · doi:10.1007/BF02438234
[8]Taimanov, I. A.: Surfaces in the four-space and the Davey–Stewartson equations, Journal of geometry and physics 56, No. 8, 1235-1256 (2006) · Zbl 1103.53031 · doi:10.1016/j.geomphys.2005.06.013
[9]Wang, Y.: The Cauchy problem for the elliptic–hyperbolic Davey–Stewartson system in Sobolev space, Journal of mathematical analysis and applications 367, No. 1, 174-192 (2010)
[10]Zhao, X.: Self-similar solutions to a generalized Davey–Stewartson system, Mathematical and computer modelling 50, No. 9–10, 1394-1399 (2009) · Zbl 1185.35272 · doi:10.1016/j.mcm.2009.04.023