zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two step nilsystems and parallelepipeds. (Nilsystèmes d’ordre 2 et parallélépipèdes.) (French) Zbl 1217.37010
Summary: One natural extension of this family is the class of nilsystems and their inverse limits. These systems have arisen in recent applications in ergodic theory and in additive combinatorics, renewing interest in studying these classical objects. Minimal rotations can be characterized via the regionally proximal relation. We introduce a new relation, the bi-regionally proximal relation, and show that it characterizes inverse limits of two step nilsystems. Minimal rotations are linked to almost periodic sequences, and more generally nilsystems correspond to nilsequences. Theses sequences were introduced in ergodic theory and have since be used in some questions of Number Theory. Using our characterization of two step nilsystems we deduce a characterization of two step nilsequences. The proofs rely in an essential way on the study of “parallelepiped structures” developed by B. Kra and the first author [Bull. Soc. Math. Fr. 136, No. 3, 405–437 (2008; Zbl 1189.11006)].
MSC:
37B05Transformations and group actions with special properties
54A20Convergence in general topology
57S05Topological properties of groups of homeomorphisms or diffeomorphisms