zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complete order amenability of the Fourier algebra. (English) Zbl 1217.43001
The authors define complete order amenability and first-order cohomology groups for quantized Banach ordered algebras. Let G be a locally compact group. Then the Fourier algebra A(G) is a quantized Banach ordered algebra. It is proved that A(G) is complete order amenable if and only if A(G) is operator amenable. The authors also show that all complete order derivations from A(G) to any dual Banach completely ordered A(G)-bimodule are inner if and only if A(G) is operator amenable.
43A07Means on groups, semigroups, etc.; amenable groups
22D15Group algebras of locally compact groups
[1]W. Arendt, J. de Cannière, Order isomorphisms of Fourier algebras, J. Funct. Anal., 50 (1983), 1–7. · Zbl 0506.43001 · doi:10.1016/0022-1236(83)90057-5
[2]D. P. Blecher, V. I. Paulsen, Tensor product of operator spaces, J. Funct. Anal., 99 (1991), 262–292. · Zbl 0786.46056 · doi:10.1016/0022-1236(91)90042-4
[3]M. D. Choi, E. G. Effros, Injectivity and operator spaces, J. Funct. Anal., 24(2) (1977), 156–209. · Zbl 0341.46049 · doi:10.1016/0022-1236(77)90052-0
[4]H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
[5]Y. Dermenjian, J. Saint-Raymond, Product tensorial de deux cones convexes saillants. Seminaire Choquet, 9e Anne’e, 20 (1970).
[6]E. G. Effros, Advances in quantized functional analysis. In Proceedings of the ICM, Berkeley, 1986, pp. 906–916, Amer. Math. Soc., Providence, RI, 1987.
[7]E. G. Effros, Z.-J. Ruan, On approximation properties for operator spaces, Internat. J. Math., 1(2) (1990), 163–187. · Zbl 0747.46014 · doi:10.1142/S0129167X90000113
[8]E. G. Effros, Z. J. Ruan, Operator Spaces, London Math. Soc. Monographs, Clarendon Press, Oxford, 2000.
[9]P. Eymard, L’algèbra de Fourier d’un groupe localment compact, Bull. Soc. Math. France, 92 (1964), 181–236.
[10]J. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995.
[11]B. E. Forrest, V. Runde, Amenability and weak amenability of the Fourier algebra, Math. Z., 250 (2005), 731–744. · Zbl 1080.22002 · doi:10.1007/s00209-005-0772-2
[12]B. E. Forrest, P. J. Wood, Cohomology and the operator space structure of the Fourier algebra and its second dual, Indiana Univ. Math. J., 50 (2001), 1217–1240. · Zbl 1037.43005 · doi:10.1512/iumj.2001.50.1835
[13]U. Haagerup, Injectivity and decomposition of completely bounded maps, unpublished notes.
[14]B. E. Johnson, Cohomology of Banach algebras, Memoirs Amer. Math. Soc., 127 (1972).
[15]H. Leptin, Sur lalg’ebre de Fourier dun groupe localement compact, C. R. Acad. Sci. Paris, Ser. A., 266 (1968), 1180–1182.
[16]V. Losert, On tensor product of Fourier algebras, Arch. Math (Basel), 43 (1984), 370–372. · Zbl 0587.43001 · doi:10.1007/BF01196662
[17]A. Paterson, Amenability, Amer. Math. Soc. Monographs 29, Providence, 1988.
[18]V. Paulsen, Completely bounded maps on C*-algebras and invariant operator rings, Proc. Amer. Math. Soc., 86(1) (1982), 91–96.
[19]G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Note Series 294, Cambridge University Press, Cambridge, 2003.
[20]J. P. Pier, Amenable Banach Algebras, Longman Publishing Group, New York, 1988.
[21]J. P. Pier, Amenable Locally Compact Groups, Wiley-Interscince, New York, 1984.
[22]L. Bing-Ren, Introduction to Operator Algebras, World Scientific, Singapore, 1972.
[23]Z. J. Ruan, The operator amenability of A(G), Amer. J. Math., 117 (1995), 1449–1474. · Zbl 0842.43004 · doi:10.2307/2375026
[24]V. Runde, Lectures on Amenability, Lecture Notes in Math. 1774, Speringer, Berlin, 2002.
[25]W. J. Schreiner, Matrix regular operator spaces, J. Funct. Anal., 152 (1997), 136–175. · Zbl 0898.46017 · doi:10.1006/jfan.1997.3160
[26]H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974.
[27]G. Wittstock, What are operator spaces. http://www.math.uni-sb.de/ag /wittstock/projekt2001.html .