zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sobolev spaces. With applications to elliptic partial differential equations. Transl. from the Russian by T. O. Shaposhnikova. 2nd revised and augmented ed. (English) Zbl 1217.46002
Grundlehren der Mathematischen Wissenschaften 342. Berlin: Springer (ISBN 978-3-642-15563-5/hbk; 978-3-642-15564-2/ebook). xxviii, 866 p. EUR 129.95; £ 117.00; SFR 142.00 (2011).

The material contained in this volume is an expanded and revised version of [V. G. Maz’ya, “Sobolev spaces” (Berlin etc.: Springer-Verlag) (1985; Zbl 0692.46023)]. This new edition of the book is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.

The contents of the volume is divided into 18 chapters, as follows: 1. Basic Properties of Sobolev Spaces; 2. Inequalities for Functions Vanishing at the Boundary; 3. Conductor and Capacitary Inequalities with Applications to Sobolev-Type Embeddings; 4. Generalizations for Functions on Manifolds and Topological Spaces; 5. Integrability of Functions in the Space L 1 1 (Ω); 6. Integrability of Functions in the Space L p 1 (Ω); 7. Continuity and Boundedness of Functions in Sobolev Spaces; 8. Localization Moduli of Sobolev Embeddings for General Domains; 9. Space of Functions of Bounded Variation; 10. Certain Function Spaces, Capacities, and Potentials; 11. Capacitary and Trace Inequalities for Functions in n with Derivatives of an Arbitrary Order; 12. Pointwise Interpolation Inequalities for Derivatives and Potentials; 13. A Variant of Capacity; 14. Integral Inequality for Functions on a Cube; 15. Embedding of the Space L p l (Ω) into Other Function Spaces; 16. Embedding L p l (Ω,ν)W r m (Ω); 17. Approximation in Weighted Sobolev Spaces; 18. Spectrum of the Schrödinger Operator and the Dirichlet Laplacian.

This comprehensive volume is very well written and well structured. It will certainly serve as a valuable reference work for graduate students and researchers working in related fields.

MSC:
46-02Research monographs (functional analysis)
46E35Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems