zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients. (English) Zbl 1217.60054
Summary: We study the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations under some Carathéodory-type conditions on the coefficients by means of the successive approximation. In particular, we generalize and improve the results of T.E. Govindan [Stochastics 77, No. 2, 139–154 (2005; Zbl 1115.60064)] and J. Bao and Z. Hou [Comput. Math. Appl. 59, No. 1, 207–214 (2010; Zbl 1189.60122)].
60H15Stochastic partial differential equations
35R10Partial functional-differential equations
35R60PDEs with randomness, stochastic PDE
[1]Liu, K.: Stability of infinite dimensional stochastic differential equations with applications, (2006)
[2]Govindan, T. E.: Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics 77, 139-154 (2005) · Zbl 1115.60064 · doi:10.1080/10451120512331335181
[3]Bao, J.; Hou, Z.: Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients, Comput. math. Appl. 59, 207-214 (2010) · Zbl 1189.60122 · doi:10.1016/j.camwa.2009.08.035
[4]Taniguchi, T.: Successive approximations to solutions of stochastic differential equations, J. differential equations 96, 152-169 (1992) · Zbl 0744.34052 · doi:10.1016/0022-0396(92)90148-G
[5]Turo, J.: Successive approximations of solutions to stochastic functional differential equations, Period. math. Hungar. 30, 87-96 (1995) · Zbl 0816.60055 · doi:10.1007/BF01876930
[6]Cao, G.; He, K.; Zhang, X.: Successive approximations of infinite dimensional SDES with jump, Stoch. syst. 5, 609-619 (2005) · Zbl 1082.60048 · doi:10.1142/S0219493705001584
[7]Pazy, A.: Semigroups of linear operators and applications to partial differential equations, (1992)