zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Regarding the accuracy of optimal eighth-order methods. (English) Zbl 1217.65089
Summary: It is widely known that when the order of root solvers increases, their accuracy comes up as well. In light of this, most of the researchers in this field of study have tried to increase the order of known schemes for obtaining optimal three-step eighth-order methods in which there are four evaluations per iteration. The aim of this article is to challenge this standpoint when the starting points are in the vicinity of the root, but not so close. Toward this end, a novel method of order six with the same number of evaluations per iteration is suggested and demonstrated while its accuracy is better than the accuracy of optimal eighth-order schemes for such initial guesses. The superiority of the developed technique is confirmed by numerical examples.
MSC:
65H05Single nonlinear equations (numerical methods)
Software:
Mathematica
References:
[1]Iliev, A.; Kyurkchiev, N.: Nontrivial methods in numerical analysis: selected topics in numerical analysis, (2010)
[2]Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204
[3]Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iteration, J. ACM 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[4]Homeier, H. H. H.: On Newton-type methods for multiple roots with cubic convergence, J. comput. Appl. math. 231, 249-254 (2009) · Zbl 1168.65024 · doi:10.1016/j.cam.2009.02.006
[5]Soleymani, F.: Revisit of jarratt method for solving nonlinear equations, Numer. algorithms (2010)
[6]Amat, S.; Busquier, S.; Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view, Sci. ser. A math. Sci. 10, 3-35 (2004) · Zbl 1137.37316
[7]Uko, L. U.; Adeyeye, J. O.: Newton iterative methods for nonlinear operator equations, Nonlinear stud. 8, 465-477 (2001) · Zbl 1006.65054
[8]Bi, W.; Wu, Q.; Ren, H.: A new family of eighth-order iterative methods for solving nonlinear equations, Appl. math. Comput. 214, 236-245 (2009) · Zbl 1173.65030 · doi:10.1016/j.amc.2009.03.077
[9]Liu, L.; Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations, Appl. math. Comput. 215, 3449-3454 (2010) · Zbl 1183.65051 · doi:10.1016/j.amc.2009.10.040
[10]Sharma, J. R.; Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence, Numer. algorithms 54, 445-458 (2010) · Zbl 1195.65067 · doi:10.1007/s11075-009-9345-5
[11]Thukral, R.; Petkovic, M. S.: A family of three-point methods of optimal order for solving nonlinear equations, J. comput. Appl. math. 233, 2278-2284 (2010) · Zbl 1180.65058 · doi:10.1016/j.cam.2009.10.012
[12]Wang, X.; Liu, L.: New eighth-order iterative methods for solving nonlinear equations, J. comput. Appl. math. 234, 1611-1620 (2010) · Zbl 1190.65081 · doi:10.1016/j.cam.2010.03.002
[13]Kyurkchiev, N.; Iliev, A.: A note on the ”constructing” of nonstationary methods for solving nonlinear equations with raised speed of convergence, Serdica J. Comput. 3, 47-74 (2009) · Zbl 1194.65074
[14]Alarcon, V.; Amat, S.; Busquier, S.; Manzano, F.: High order iterative schemes for quadratic equations, Numer. algorithms 48, 373-381 (2008) · Zbl 1155.65039 · doi:10.1007/s11075-008-9206-7
[15]Kou, J.; Wang, X.; Sun, S.: Some new root-finding methods with eighth-order convergence, Bull. math. Soc. sci. Math. roumanie 53, 133-143 (2010) · Zbl 1212.65196
[16]Jarratt, P.: Some efficient fourth order multipoint methods for solving equations, Bit 9, 119-124 (1969) · Zbl 0188.22101 · doi:10.1007/BF01933248
[17]Wolfram, S.: The Mathematica book, (2003)
[18]Basu, D.: From third to fourth order variant of Newton’s method for simple roots, Appl. math. Comput. 202, 886-892 (2008) · Zbl 1147.65037 · doi:10.1016/j.amc.2008.02.021
[19]Cordero, A.; Hueso, J. L.; Martinez, E.; Torregrosa, J. R.: A family of iterative methods with sixth and seventh order convergence for nonlinear equations, Math. comput. Modelling 52, 1490-1496 (2010) · Zbl 1205.65170 · doi:10.1016/j.mcm.2010.05.033
[20]Kou, J.; Li, Y.: A variant of Chebyshev’s method with sixth-order convergence, Numer. algorithms 43, 273-278 (2006) · Zbl 1125.65042 · doi:10.1007/s11075-006-9058-y