zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Laplace Adomian decomposition method for solving a model for HIV infection of CD4 + T cells. (English) Zbl 1217.65164
Summary: The Laplace Adomian Decomposition Method is implemented to give an approximate solution of nonlinear ordinary differential equation systems, such as a model for HIV infection of CD4 + T cells. The technique is described and illustrated with numerical example. Some plots are presented to show the reliability and simplicity of the methods.
MSC:
65L99Numerical methods for ODE
92D30Epidemiology
References:
[1]Perelson, A. S.; Kirschner, D. E.; Boer, R. D.: Dynamics of HIV infection CD4+T cells, Math. biosci. 114, 81-125 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[2]Perelson, A. S.; Nelson, P. W.: Mathematical analysis of HIV–I dynamics in vivo, SIAM rev. 41, No. 1, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[3]Wang, L.; Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T cells, Math. biosci. 200, 44-57 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[4]Asquith, B.; Bangham, C. R. M.: The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology, J. theoret. Biol. 222, 53-69 (2003)
[5]Nowak, M.; May, R.: Mathematical biology of HIV infections: antigenic variation and diversity threshold, Math. biosci. 106, 1-21 (1991) · Zbl 0738.92008 · doi:10.1016/0025-5564(91)90037-J
[6]Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations, Comput. math. Appl. 21, No. 5, 101-127 (1991) · Zbl 0732.35003 · doi:10.1016/0898-1221(91)90220-X
[7]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[8]Bahuguna, D.; Ujlayan, A.; Pandeya, D. N.: A comparative study of numerical methods for solving an integro-differential equation, Comput. math. Appl. 57, No. 9, 1485-1493 (2009) · Zbl 1186.65158 · doi:10.1016/j.camwa.2008.10.097
[9]Momani, S.; Erturk, V. S.: Solutions of non-linear oscillators by the modified differential transform method, Comput. math. Appl. 55, 833-842 (2008) · Zbl 1142.65058 · doi:10.1016/j.camwa.2007.05.009
[10]Khuri, S. A.: A new approach to bratu’s problem, Appl. math. Comput. 147, 131-136 (2004) · Zbl 1032.65084 · doi:10.1016/S0096-3003(02)00656-2
[11]Kiymaz, O.: An algorithm for solving initial value problems using Laplace Adomian decomposition method, Appl. math. Sci. 3, No. 30, 1453-1459 (2009) · Zbl 1189.65138 · doi:http://www.m-hikari.com/ams/ams-password-2009/ams-password29-32-2009/index.html
[12]Babolian, E.; Biazar, J.; Vahidi, A. R.: A new computational method for Laplace transforms by decomposition method, Appl. math. Comput. 150, 841-846 (2004) · Zbl 1039.65094 · doi:10.1016/S0096-3003(03)00312-6
[13]M. Merdan, Homotopy perturbation Method for solving a model for infection of CD4+T cells, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi (ISSN: 1305-7820) 12 (2007) 39–52.
[14]Yusufoglu (Agadjanov), E.: Numerical solution of Duffing equation by the Laplace decomposition algorithm, Appl. math. Comput. 177, No. 2, 572-580 (2006) · Zbl 1096.65067 · doi:10.1016/j.amc.2005.07.072
[15]Abbasbandy, S.: Application of he’s homotopy perturbation method for Laplace transform, Chaos solitons fractals 30, 1206-1212 (2006) · Zbl 1142.65417 · doi:10.1016/j.chaos.2005.08.178
[16]Khuri, S. A.: A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. appl. Math. 1, No. 4, 141-155 (2001) · Zbl 0996.65068 · doi:10.1155/S1110757X01000183